论文标题

自我监督核编码的比例依赖层

Scale dependant layer for self-supervised nuclei encoding

论文作者

Naylor, Peter, Tsai, Yao-Hung Hubert, Laé, Marick, Yamada, Makoto

论文摘要

自我监督学习的最新发展使我们有可能进一步减少围绕特定目标对象的多步管道中的人类干预。在本文中,焦点在组织病理学图像中的细胞核中放置。特别是,我们旨在以无监督的方式提取蜂窝信息,以完成下游任务。随着核以各种尺寸表现出来,我们提出了一个新的依赖尺度的卷积层,以绕过调整核时绕过缩放问题。在三个核数据集中,我们基准了以下方法:手工制作的,预先训练的重新连接,有监督的重新系统和自我监督的特征。我们表明,所提出的卷积层提高了性能,并且与二线链条结合使用,与低样本设置中的监督范式相比,该层可以更好地编码核编码,并且优于所有其他提出的无人看管的方法。此外,我们扩展了现有的TNBC数据集以结合核类别的注释,以丰富和公开释放一个小样本设置数据集以进行核分割和分类。

Recent developments in self-supervised learning give us the possibility to further reduce human intervention in multi-step pipelines where the focus evolves around particular objects of interest. In the present paper, the focus lays in the nuclei in histopathology images. In particular we aim at extracting cellular information in an unsupervised manner for a downstream task. As nuclei present themselves in a variety of sizes, we propose a new Scale-dependant convolutional layer to bypass scaling issues when resizing nuclei. On three nuclei datasets, we benchmark the following methods: handcrafted, pre-trained ResNet, supervised ResNet and self-supervised features. We show that the proposed convolution layer boosts performance and that this layer combined with Barlows-Twins allows for better nuclei encoding compared to the supervised paradigm in the low sample setting and outperforms all other proposed unsupervised methods. In addition, we extend the existing TNBC dataset to incorporate nuclei class annotation in order to enrich and publicly release a small sample setting dataset for nuclei segmentation and classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源