论文标题
流行:通过Webly跨模式查询扩展的新时尚产品的潜在性能
POP: Mining POtential Performance of new fashion products via webly cross-modal query expansion
论文作者
论文摘要
我们提出了一个以数据为中心的管道,能够为新的时尚产品性能预测(NFPPF)问题生成外源性观察数据,即预测没有过去观察的全新服装探测器的性能。我们的管道从一件服装探针的单个可用图像开始制造了失踪的过去。它首先扩展与图像关联的文本标签,在过去的特定时间上查询相关的时尚图像或不合时宜的图像。通过自信的学习,可以在这些网络图像上对二进制分类器进行良好的训练,以了解过去的时尚以及探测图像对这种时尚性的概念的符合。这种合规性产生了潜在的性能(POP)时间序列,表明如果较早可用,则表现探针的表现如何。事实证明,POP对探测器的未来表现具有很高的预测,从而改善了最近的Visuelle快速时尚数据集中所有最新模型的销售预测。我们还表明,POP反映了时尚前锋基准上新样式(服装的合奏)的基础真实性的普及,这表明我们的熟悉的信号是一个真实的流行表达,每个人都可以访问,并且可以在任何分析时间内概括。预测代码,数据和流行时间序列可在以下网址提供:https://github.com/humaticslab/pop-mining-potential-performance
We propose a data-centric pipeline able to generate exogenous observation data for the New Fashion Product Performance Forecasting (NFPPF) problem, i.e., predicting the performance of a brand-new clothing probe with no available past observations. Our pipeline manufactures the missing past starting from a single, available image of the clothing probe. It starts by expanding textual tags associated with the image, querying related fashionable or unfashionable images uploaded on the web at a specific time in the past. A binary classifier is robustly trained on these web images by confident learning, to learn what was fashionable in the past and how much the probe image conforms to this notion of fashionability. This compliance produces the POtential Performance (POP) time series, indicating how performing the probe could have been if it were available earlier. POP proves to be highly predictive for the probe's future performance, ameliorating the sales forecasts of all state-of-the-art models on the recent VISUELLE fast-fashion dataset. We also show that POP reflects the ground-truth popularity of new styles (ensembles of clothing items) on the Fashion Forward benchmark, demonstrating that our webly-learned signal is a truthful expression of popularity, accessible by everyone and generalizable to any time of analysis. Forecasting code, data and the POP time series are available at: https://github.com/HumaticsLAB/POP-Mining-POtential-Performance