论文标题

部分可观测时空混沌系统的无模型预测

Machine Learned Particle Detector Simulations

论文作者

Darulis, D., Tyson, R., Ireland, D. G., Glazier, D. I., McKinnon, B., Pauli, P.

论文摘要

使用机器学习算法是一种产生非常快速的检测器模拟的有吸引力的方法,用于散射反应,否则在计算上可能很昂贵。在这里,我们开发了一种分解方法,我们可以单独处理反应中产生的每个粒子:首先确定是否被检测到(接受),然后确定其重建变量,例如四动量(重建)。对于接受度,我们建议使用概率分类密度比技术来确定粒子被检测到的概率是许多变量的函数。为此目的对神经网络和增强决策树分类器进行了测试,我们发现两者结合通过重新持续阶段提供了最可靠的结果。为了重建,基于最近的邻居或决策树的一种简单的合成数据生成方法。使用玩具参数化检测器,我们证明了这种方法可以可靠,准确地从物理反应中再现运动学分布。相对简单的算法允许在产生可靠的结果的同时进行小型培训开销。此类快速模拟数据的可能应用包括参数提取的玩具-MC研究,预处理昂贵的仿真或生成背景分布形状的模板。

The use of machine learning algorithms is an attractive way to produce very fast detector simulations for scattering reactions that can otherwise be computationally expensive. Here we develop a factorised approach where we deal with each particle produced in a reaction individually: first determine if it was detected (acceptance) and second determine its reconstructed variables such as four momentum (reconstruction). For the acceptance we propose using a probability classification density ratio technique to determine the probability the particle was detected as a function of many variables. Neural Network and Boosted Decision Tree classifiers were tested for this purpose and we found using a combination of both, through a reweighting stage, provided the most reliable results. For reconstruction a simple method of synthetic data generation, based on nearest neighbour or decision trees was developed. Using a toy parameterised detector we demonstrate that such a method can reliably and accurately reproduce kinematic distributions from a physics reaction. The relatively simple algorithms allow for small training overheads whilst producing reliable results. Possible applications for such fast simulated data include Toy-MC studies of parameter extraction, preprocessing expensive simulations or generating templates for background distributions shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源