论文标题
驾驶员Dojo:用于自动驾驶的可推广强化学习的基准
Driver Dojo: A Benchmark for Generalizable Reinforcement Learning for Autonomous Driving
论文作者
论文摘要
强化学习(RL)已证明可以在各种任务中达到超级人类水平的表现。但是,与受监督的机器学习不同,对各种情况的学习策略仍然是现实世界中最具挑战性的问题之一。自主驾驶(AD)提供了一个多方面的实验领域,因为有必要在许多变化的道路布局和可能的交通情况大量分布中学习正确的行为,包括个人驾驶员个性和难以预测的交通事件。在本文中,我们根据可配置,灵活和性能的代码库为AD提出了一个具有挑战性的基准。我们的基准测试使用了随机场景发生器的目录,包括用于道路布局和交通变化的多种机制,不同的数值和视觉观察类型,不同的动作空间,不同的车辆模型,并允许在静态场景定义下使用。除了纯粹的算法见解外,我们面向应用程序的基准还可以更好地理解设计决策的影响,例如行动和观察空间对政策的普遍性。我们的基准旨在鼓励研究人员提出能够在各种情况下成功推广的解决方案,这是当前RL方法失败的任务。基准的代码可在https://github.com/seawee1/driver-dojo上获得。
Reinforcement learning (RL) has shown to reach super human-level performance across a wide range of tasks. However, unlike supervised machine learning, learning strategies that generalize well to a wide range of situations remains one of the most challenging problems for real-world RL. Autonomous driving (AD) provides a multi-faceted experimental field, as it is necessary to learn the correct behavior over many variations of road layouts and large distributions of possible traffic situations, including individual driver personalities and hard-to-predict traffic events. In this paper we propose a challenging benchmark for generalizable RL for AD based on a configurable, flexible, and performant code base. Our benchmark uses a catalog of randomized scenario generators, including multiple mechanisms for road layout and traffic variations, different numerical and visual observation types, distinct action spaces, diverse vehicle models, and allows for use under static scenario definitions. In addition to purely algorithmic insights, our application-oriented benchmark also enables a better understanding of the impact of design decisions such as action and observation space on the generalizability of policies. Our benchmark aims to encourage researchers to propose solutions that are able to successfully generalize across scenarios, a task in which current RL methods fail. The code for the benchmark is available at https://github.com/seawee1/driver-dojo.