论文标题
使用贝叶斯优化的设计优化水力学涡轮的草稿管和轮毂组件的形状
Optimization of the Shape of a Hydrokinetic Turbine's Draft Tube and Hub Assembly Using Design-by-Morphing with Bayesian Optimization
论文作者
论文摘要
由于评估成本函数(例如,使用计算流体动力学)来确定表面控制所需的性能所需的费用(例如,使用计算流体动力学),通常不可能找到流体动力或空气动力表面的最佳设计。此外,由于施加的几何限制,常规参数化方法和用户偏见,设计空间本身的固有局限性可以限制所选设计空间内设计的{\ it as as ass iT},而不管传统的传统优化方法还是使用机器学习的较新的,具有数据驱动的设计算法来搜索设计空间。我们提出了2条攻击来解决这些困难:我们提出了(1)一种使用变形创建设计空间的方法,我们称为{\ it by-morphing}(dbm); (2)一种优化算法,用于搜索使用新型贝叶斯优化(BO)策略的空间,我们称之为{\ IT混合变量,多目标贝叶斯优化}(MixMobo)。我们采用这种形状优化策略来最大程度地提高基本动力学涡轮的功率输出。在同时应用这两种策略时,我们证明我们可以创建一个新颖的,几何毫无约束的设计空间,设计了试管和轮毂形状的设计空间,然后通过{\ it最低}成本函数呼叫的数量来同时优化它们。我们的框架用途广泛,可以应用于各种流体问题的形状优化。
Finding the optimal design of a hydrodynamic or aerodynamic surface is often impossible due to the expense of evaluating the cost functions (say, with computational fluid dynamics) needed to determine the performances of the flows that the surface controls. In addition, inherent limitations of the design space itself due to imposed geometric constraints, conventional parameterization methods, and user bias can restrict {\it all} of the designs within a chosen design space regardless of whether traditional optimization methods or newer, data-driven design algorithms with machine learning are used to search the design space. We present a 2-pronged attack to address these difficulties: we propose (1) a methodology to create the design space using morphing that we call {\it Design-by-Morphing} (DbM); and (2) an optimization algorithm to search that space that uses a novel Bayesian Optimization (BO) strategy that we call {\it Mixed variable, Multi-Objective Bayesian Optimization} (MixMOBO). We apply this shape optimization strategy to maximize the power output of a hydrokinetic turbine. Applying these two strategies in tandem, we demonstrate that we can create a novel, geometrically-unconstrained, design space of a draft tube and hub shape and then optimize them simultaneously with a {\it minimum} number of cost function calls. Our framework is versatile and can be applied to the shape optimization of a variety of fluid problems.