论文标题

通过分层神经网络提高参数检测的效率

Boosting the Efficiency of Parametric Detection with Hierarchical Neural Networks

论文作者

Yan, Jingkai, Colgan, Robert, Wright, John, Márka, Zsuzsa, Bartos, Imre, Márka, Szabolcs

论文摘要

引力波天文学是一个充满活力的领域,它利用经典和现代数据处理技术来理解宇宙。已经提出了各种方法来提高检测方案的效率,层次匹配的过滤是一个重要的策略。同时,深度学习方法最近证明了与匹配的过滤方法的一致性又表现出了显着的统计性能。在这项工作中,我们提出了分层检测网络(HDN),这是一种新型的有效检测方法,结合了分层匹配和深度学习的思想。使用新型损失函数对网络进行了训练,该功能同时编码统计准确性和效率的目标。我们讨论了提出的模型的复杂性降低的来源,并描述了在不同区域专门使用每个层的初始化的一般配方。我们使用开放的Ligo数据和合成注射的实验证明了HDN的性能,并使用两层型号观察$ 79 \%$ $效率的增长,而匹配的过滤率则以$ 0.2 \%$ $的匹配过滤率。此外,我们展示了如何使用两层模型训练三层HDN可以进一步提高准确性和效率,从而突出了多个简单层在有效检测中的功能。

Gravitational wave astronomy is a vibrant field that leverages both classic and modern data processing techniques for the understanding of the universe. Various approaches have been proposed for improving the efficiency of the detection scheme, with hierarchical matched filtering being an important strategy. Meanwhile, deep learning methods have recently demonstrated both consistency with matched filtering methods and remarkable statistical performance. In this work, we propose Hierarchical Detection Network (HDN), a novel approach to efficient detection that combines ideas from hierarchical matching and deep learning. The network is trained using a novel loss function, which encodes simultaneously the goals of statistical accuracy and efficiency. We discuss the source of complexity reduction of the proposed model, and describe a general recipe for initialization with each layer specializing in different regions. We demonstrate the performance of HDN with experiments using open LIGO data and synthetic injections, and observe with two-layer models a $79\%$ efficiency gain compared with matched filtering at an equal error rate of $0.2\%$. Furthermore, we show how training a three-layer HDN initialized using two-layer model can further boost both accuracy and efficiency, highlighting the power of multiple simple layers in efficient detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源