论文标题

基于技能发现的自动驾驶汽车交叉路口的自适应决策

Adaptive Decision Making at the Intersection for Autonomous Vehicles Based on Skill Discovery

论文作者

He, Xianqi, Yang, Lin, Lu, Chao, Li, Zirui, Gong, Jianwei

论文摘要

在城市环境中,复杂和不确定的交叉场景对于自动驾驶而具有挑战性。为了确保安全,建立可以处理与其他车辆互动的自适应决策系统至关重要。在常见情况下,手动设计的基于模型的方法是可靠的。但是在不确定的环境中,它们不是可靠的,因此提出了基于学习的方法,尤其是增强学习(RL)方法。但是,当场景更改时,当前的RL方法需要进行重新培训。换句话说,当前的RL方法无法重复使用累积的知识。他们忘记了在给出新场景时学到的知识。为了解决这个问题,我们提出了一个可以自主积累和重用知识的层次结构框架。所提出的方法将运动原语(MP)的概念与分层增强学习(HRL)结合在一起。它将复杂的问题分解为多个基本子任务以减少难度。在基于Carla模拟器的具有挑战性的交叉场景中测试了所提出的方法和其他基线方法。交点方案包含三个不同的子任务,可以反映出真实交通流量的复杂性和不确定性。在离线学习和测试之后,事实证明,所提出的方法在所有方法中具有最佳性能。

In urban environments, the complex and uncertain intersection scenarios are challenging for autonomous driving. To ensure safety, it is crucial to develop an adaptive decision making system that can handle the interaction with other vehicles. Manually designed model-based methods are reliable in common scenarios. But in uncertain environments, they are not reliable, so learning-based methods are proposed, especially reinforcement learning (RL) methods. However, current RL methods need retraining when the scenarios change. In other words, current RL methods cannot reuse accumulated knowledge. They forget learned knowledge when new scenarios are given. To solve this problem, we propose a hierarchical framework that can autonomously accumulate and reuse knowledge. The proposed method combines the idea of motion primitives (MPs) with hierarchical reinforcement learning (HRL). It decomposes complex problems into multiple basic subtasks to reduce the difficulty. The proposed method and other baseline methods are tested in a challenging intersection scenario based on the CARLA simulator. The intersection scenario contains three different subtasks that can reflect the complexity and uncertainty of real traffic flow. After offline learning and testing, the proposed method is proved to have the best performance among all methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源