论文标题
ge-grasp:杂乱无章的有效面向目标的抓握
GE-Grasp: Efficient Target-Oriented Grasping in Dense Clutter
论文作者
论文摘要
在密集的混乱中抓住是自动机器人的一项基本技能。但是,在混乱的情况下,拥挤性和遮挡造成了很大的困难,无法在没有碰撞的情况下产生有效的掌握姿势,这会导致低效率和高失败率。为了解决这些问题,我们提出了一个名为GE-GRASP的通用框架,用于在密集的混乱中用于机器人运动计划,在此,我们利用各种动作原始素来遮挡对象去除,并呈现发电机 - 词器架构架构以避免空间碰撞。因此,我们的GE-GRASP能够以有希望的成功率有效地将物体抓住密集的杂物。具体而言,我们定义了三个动作基础:面向目标的握把用于目标捕获,推动和非目标的抓握,以减少拥挤性和遮挡。发电机有效地提供了参考空间信息的各种候选候选者。同时,评估人员评估所选行动原始候选者,其中最佳动作由机器人实施。在模拟和现实世界环境中进行的广泛实验表明,我们的方法在运动效率和成功率方面优于杂乱无章的最新方法。此外,在模拟环境中,我们在现实世界中实现了可比的性能,这表明我们的GE-Grasp具有强大的概括能力。补充材料可在以下网址获得:https://github.com/captainwudaokou/ge-grasp。
Grasping in dense clutter is a fundamental skill for autonomous robots. However, the crowdedness and occlusions in the cluttered scenario cause significant difficulties to generate valid grasp poses without collisions, which results in low efficiency and high failure rates. To address these, we present a generic framework called GE-Grasp for robotic motion planning in dense clutter, where we leverage diverse action primitives for occluded object removal and present the generator-evaluator architecture to avoid spatial collisions. Therefore, our GE-Grasp is capable of grasping objects in dense clutter efficiently with promising success rates. Specifically, we define three action primitives: target-oriented grasping for target capturing, pushing, and nontarget-oriented grasping to reduce the crowdedness and occlusions. The generators effectively provide various action candidates referring to the spatial information. Meanwhile, the evaluators assess the selected action primitive candidates, where the optimal action is implemented by the robot. Extensive experiments in simulated and real-world environments show that our approach outperforms the state-of-the-art methods of grasping in clutter with respect to motion efficiency and success rates. Moreover, we achieve comparable performance in the real world as that in the simulation environment, which indicates the strong generalization ability of our GE-Grasp. Supplementary material is available at: https://github.com/CaptainWuDaoKou/GE-Grasp.