论文标题

观察者设计的流行过程估计

Observer Design for the State Estimation of Epidemic Processes

论文作者

Niazi, Muhammad Umar B., Johansson, Karl Henrik

论文摘要

尽管适当的测量状态变量可以确保可观察到性,但为州估计流行模型设计状态观察者仍然是一项艰巨的任务。流行病是一个非线性过程,通常被建模为群众行动定律,这是一种二次形式。因此,在一个紧凑的域上,其Lipschitz常数被证明是局部且相对较大的,这使现有观察者体系结构的基于Lipschitz的设计标准变得不可行。在本文中,提出了一种新颖的观察者结构,用于对包含确定性流行模型的一类非线性系统的状态估计。拟议的观察者提供了额外的杠杆作用,可以减少非线性在估计误差动态中的影响,这在其他类似Luenberger的观察者中是不可能的。代数riccati不等式是在本地Lipschitz和广义Lipschitz假设下估算误差渐近收敛到零的足够条件。还提供了代数riccati不等式的等效线性基质不等式公式。提出的观察者设计的功效通过其在著名的Sidarthe-V流行模型上的应用来说明。

Although an appropriate choice of measured state variables may ensure observability, designing state observers for the state estimation of epidemic models remains a challenging task. Epidemic spread is a nonlinear process, often modeled as the law of mass action, which is of a quadratic form; thus, on a compact domain, its Lipschitz constant turns out to be local and relatively large, which renders the Lipschitz-based design criteria of existing observer architectures infeasible. In this paper, a novel observer architecture is proposed for the state estimation of a class of nonlinear systems that encompasses the deterministic epidemic models. The proposed observer offers extra leverage to reduce the influence of nonlinearity in the estimation error dynamics, which is not possible in other Luenberger-like observers. Algebraic Riccati inequalities are derived as sufficient conditions for the asymptotic convergence of the estimation error to zero under local Lipschitz and generalized Lipschitz assumptions. Equivalent linear matrix inequality formulations of the algebraic Riccati inequalities are also provided. The efficacy of the proposed observer design is illustrated by its application on the celebrated SIDARTHE-V epidemic model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源