论文标题

自我监督图表示学习的生成子图对比度

Generative Subgraph Contrast for Self-Supervised Graph Representation Learning

论文作者

Han, Yuehui, Hui, Le, Jiang, Haobo, Qian, Jianjun, Xie, Jin

论文摘要

对比度学习在图表学习领域表现出了巨大的希望。通过手动构建正/负样本,大多数图对比度学习方法都依赖于基于矢量内部产品的相似性度量标准来区分图形表示样品。但是,手工制作的样品构造(例如,图表的节点或边缘的扰动)可能无法有效捕获图形的固有局部结构。同样,基于矢量内部产品的相似性度量标准无法完全利用图表的局部结构来表征图差。为此,在本文中,我们提出了一种基于自适应子图生成的新型对比度学习框架,以实现有效且强大的自我监督图表示学习,并且最佳传输距离被用作子绘图之间的相似性指标。它旨在通过捕获图的固有结构并根据子图的特征和结构来区分样品来生成对比样品。具体而言,对于每个中心节点,通过自适应学习的关系权重与相应邻域的节点,我们首先开发一个网络来生成插值子图。然后,我们分别构建来自相同和不同节点的子图的正和负对。最后,我们采用两种类型的最佳运输距离(即Wasserstein距离和Gromov-Wasserstein距离)来构建结构化的对比损失。基准数据集上的大量节点分类实验验证了我们的图形对比学习方法的有效性。

Contrastive learning has shown great promise in the field of graph representation learning. By manually constructing positive/negative samples, most graph contrastive learning methods rely on the vector inner product based similarity metric to distinguish the samples for graph representation. However, the handcrafted sample construction (e.g., the perturbation on the nodes or edges of the graph) may not effectively capture the intrinsic local structures of the graph. Also, the vector inner product based similarity metric cannot fully exploit the local structures of the graph to characterize the graph difference well. To this end, in this paper, we propose a novel adaptive subgraph generation based contrastive learning framework for efficient and robust self-supervised graph representation learning, and the optimal transport distance is utilized as the similarity metric between the subgraphs. It aims to generate contrastive samples by capturing the intrinsic structures of the graph and distinguish the samples based on the features and structures of subgraphs simultaneously. Specifically, for each center node, by adaptively learning relation weights to the nodes of the corresponding neighborhood, we first develop a network to generate the interpolated subgraph. We then construct the positive and negative pairs of subgraphs from the same and different nodes, respectively. Finally, we employ two types of optimal transport distances (i.e., Wasserstein distance and Gromov-Wasserstein distance) to construct the structured contrastive loss. Extensive node classification experiments on benchmark datasets verify the effectiveness of our graph contrastive learning method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源