论文标题
DCAM:用于解释多变量数据系列分类的尺寸类激活图
dCAM: Dimension-wise Class Activation Map for Explaining Multivariate Data Series Classification
论文作者
论文摘要
数据系列分类是数据科学中的一个重要且具有挑战性的问题。通过找到导致算法做出某些决策的输入的判别部分来解释分类决策是许多应用程序的真正需求。卷积神经网络在数据系列分类任务方面表现良好;但是,对于多元数据系列的特定情况,这种类型的算法提供的解释很差。解决这一重要限制是一个重大挑战。在本文中,我们提出了一种新颖的方法,可以通过突出时间和维判别信息来解决此问题。我们的贡献是两个方面:我们首先描述了一个可以比较维度的卷积架构;然后,我们提出了一种返回DCAM的方法,DCAM是专为多元时间序列(和基于CNN的模型)设计的尺寸类激活图。使用几个合成和真实数据集的实验表明,DCAM不仅比以前的方法更准确,而且是多元时间序列中判别特征发现和分类说明的唯一可行解决方案。本文出现在Sigmod'22中。
Data series classification is an important and challenging problem in data science. Explaining the classification decisions by finding the discriminant parts of the input that led the algorithm to some decisions is a real need in many applications. Convolutional neural networks perform well for the data series classification task; though, the explanations provided by this type of algorithm are poor for the specific case of multivariate data series. Addressing this important limitation is a significant challenge. In this paper, we propose a novel method that solves this problem by highlighting both the temporal and dimensional discriminant information. Our contribution is two-fold: we first describe a convolutional architecture that enables the comparison of dimensions; then, we propose a method that returns dCAM, a Dimension-wise Class Activation Map specifically designed for multivariate time series (and CNN-based models). Experiments with several synthetic and real datasets demonstrate that dCAM is not only more accurate than previous approaches, but the only viable solution for discriminant feature discovery and classification explanation in multivariate time series. This paper has appeared in SIGMOD'22.