论文标题

高速自动赛车的弹性导航和路径计划系统

A Resilient Navigation and Path Planning System for High-speed Autonomous Race Car

论文作者

Lee, Daegyu, Jung, Chanyoung, Finazzi, Andrea, Seong, Hyunki, Shim, D. Hyunchul

论文摘要

本文介绍了Indy Automous Challenge(IAC)竞争中使用的弹性导航和计划系统。 IAC是一场比赛,全尺度赛车在印第安纳波利斯赛车场(IMS)上自动运行,最高为290 km/h(180 mph)。赛车将经历严重的振动。特别是在高速下。这些振动可以根据精确的GPS辅助测量单元来降低标准定位算法。退化的本地化可能导致严重的问题,包括碰撞。因此,我们提出了一个有弹性的导航系统,该系统使赛车在本地化故障时能够留在赛道上。我们的导航系统使用基于多传感器融合的Kalman过滤器。我们使用概率方法来检测导航解决方案的降解,以计算卡尔曼滤波器的校正步骤的最佳测量值。此外,提出了一种最佳的避免障碍的路径计划算法。在这一挑战中,赛道在赛道上有静态障碍。需要车辆以避免使用时间少的时间损失。通过考虑原始的最佳赛车线,障碍和车辆动力学,我们提出了一种基于路的路径计划算法,以确保我们的赛车可以避免有效的障碍物。提出的定位系统已成功验证,以显示其在IMS的历史世界第一次自动赛车中进行GPS测量错误的情况下防止本地化失败的能力。由于我们强大的导航和计划算法,我们能够作为前四支球队之一完成比赛,而由于碰撞或违法行为,其余五支球队未能完成比赛。

This paper describes a resilient navigation and planning system used in the Indy Autonomous Challenge (IAC) competition. The IAC is a competition where full-scale race cars run autonomously on Indianapolis Motor Speedway(IMS) up to 290 km/h (180 mph). Race cars will experience severe vibrations. Especially at high speeds. These vibrations can degrade standard localization algorithms based on precision GPS-aided inertial measurement units. Degraded localization can lead to serious problems, including collisions. Therefore, we propose a resilient navigation system that enables a race car to stay within the track in the event of localization failures. Our navigation system uses a multi-sensor fusion-based Kalman filter. We detect degradation of the navigation solution using probabilistic approaches to computing optimal measurement values for the correction step of our Kalman filter. In addition, an optimal path planning algorithm for obstacle avoidance is proposed. In this challenge, the track has static obstacles on the track. The vehicle is required to avoid them with minimal time loss. By taking the original optimal racing line, obstacles, and vehicle dynamics into account, we propose a road-graph-based path planning algorithm to ensure that our race car can perform efficient obstacle avoidance. The proposed localization system was successfully validated to show its capability to prevent localization failures in the event of faulty GPS measurements during the historic world's first autonomous racing at IMS. Owing to our robust navigation and planning algorithm, we were able to finish the race as one of the top four teams while the remaining five teams failed to finish due to collisions or out-of-track violations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源