论文标题
随着颗粒的生长,漂移和蒸发前线的全球模型。 iii。重新分布折磨和挥发物
Global Modeling of Nebulae With Particle Growth, Drift, and Evaporation Fronts. III. Redistribution of Refractories and Volatiles
论文作者
论文摘要
第一行星的形成仍然是一个未解决的问题。坚持的生长必须启动这一过程,但是多项研究表明,一系列障碍会减慢或失速生长,其中大多数是由于星云湍流。在同伴论文中,我们研究了这些障碍对一系列湍流强度$α_ {\ rm {t}} = 10^{-5} -10^{ - 10} -10^{ - 2} $的一系列湍流强度$α_ {\ rm {t}} $α_ {\ rm {t}} $α_ {\ rm {t}} $ a viscactractal和固体,紧凑粒子生长的影响。在这里,我们研究了这些相同模型中的磁盘组成如何随时间变化。我们发现,小晶粒和蒸气的对流和扩散,以及较大的紧凑粒子和分形骨料的径向向内漂移,自然会导致行星组成的各种结果。较大的颗粒在碰撞碎裂或在各种温度下碰撞碎片之前或部分蒸发,可能会由于气阻力而进行大量的内向径向迁移。这会导致内部蒸气中相关的挥发性增强,外部固体,它们各自的蒸发方面或``雪线''的稳定性。在$α_ {\ rm {t}} $的情况下,我们会看到外部星云中发生的易变或超级材料的狭窄带,它们可以与Alma。挥发带相连的“鹅卵石”带的频带,它们可以持续逐渐迁移,因为它们可以持续逐渐偏离磁盘,或者在长期以来的杂乱无章的范围内,也可以像长期的杂乱无章一样远处逃脱。这些腰带可能是形成富含超级凝管的行星的地点,例如稀有的富裕和贫困的彗星;
Formation of the first planetesimals remains an unsolved problem. Growth by sticking must initiate the process, but multiple studies have revealed a series of barriers that can slow or stall growth, most of them due to nebula turbulence. In a companion paper, we study the influence of these barriers on models of fractal aggregate and solid, compact particle growth in a viscously evolving solar-like nebula for a range of turbulent intensities $α_{\rm{t}} = 10^{-5}-10^{-2}$. Here, we examine how disk composition in these same models changes with time. We find that advection and diffusion of small grains and vapor, and radial inward drift for larger compact particles and fractal aggregates, naturally lead to diverse outcomes for planetesimal composition. Larger particles can undergo substantial inward radial migration due to gas drag before being collisionally fragmented or partially evaporating at various temperatures. This leads to enhancement of the associated volatile in both vapor inside, and solids outside, their respective evaporation fronts, or ``snowlines''. In cases of lower $α_{\rm{t}}$, we see narrow belts of volatile or supervolatile material develop in the outer nebula, which could be connected to the bands of ``pebbles" seen by ALMA. Volatile bands, which migrate inwards as the disk cools, can persist over long timescales as their gas phase continues to advect or diffuse outward across its evaporation front. These belts could be sites where supervolatile-rich planetesimals form, such as the rare CO-rich and water-poor comets; giant planets formed just outside the H$_2$O snowline may be enhanced in water.