论文标题
广义多部分熵不确定性关系的实验测试
Experimental test of generalized multipartite entropic uncertainty relations
论文作者
论文摘要
熵不确定性关系(EUR)从信息理论的角度制定了量子力学固有的不确定性的限制。不确定性关系的更严格的下限可以为量子通信协议提供信息理论安全性。最近,已经制定了用于测量任意多体系统中多个可观察物的广义欧元(GEUR)。在这里,我们使用具有可控的矫正通道的四个光子纠结状态在实验中测试了该Geur,并表明对于三方情况,Geur改善了Renes的熵界,Boileau的著名结果。作为应用程序,我们进一步证明了GEUR的量子密钥分布中的安全密钥速率有所提高。我们的结果将Eurs的测试扩展到多部分制度,并可能在实用的量子密码学任务中找到应用。
Entropic uncertainty relation (EUR) formulates the restriction of the inherent uncertainty of quantum mechanics from the information-theoretic perspective. A tighter lower bound for uncertainty relations can provide information-theoretic security to quantum communication protocols. Recently, a generalized EUR (GEUR) for the measurement of multiple observables in arbitrary many-body systems has been formulated. Here, we experimentally test this GEUR using a four-photon entangled state with a controllable decoherence channel and show that for the tripartite scenario, the GEUR improves the entropic bound from Renes--Boileau's famous results. As an application, we further demonstrate an improvement of the secure key rate in quantum key distribution from the GEUR. Our results extend the test of EURs into multipartite regimes and may find applications in practical quantum cryptography tasks.