论文标题

多模式围角:产科超声扫描中的凝视探针双向指导

Multimodal-GuideNet: Gaze-Probe Bidirectional Guidance in Obstetric Ultrasound Scanning

论文作者

Men, Qianhui, Teng, Clare, Drukker, Lior, Papageorghiou, Aris T., Noble, J. Alison

论文摘要

在超声(US)扫描期间,眼睛跟踪器可以为超声波检查员提供视觉指导。对于经验丰富的运营商来说,这种指导可能是有价值的,可以提高他们在操纵探测器以实现所需飞机方面的扫描技巧。在本文中,提出了一种多模式的指导方法(多模式形式的指南)来捕获现实世界中的视频信号,同步凝视和统一框架内的探测运动之间的逐步依赖性。为了了解目光运动与探测运动之间的因果关系,我们的模型利用多任务学习共同学习了两个相关的任务:预测有经验的超声仪将在常规产科扫描中执行的凝视运动和探测信号。这两个任务通过模态感知的空间图关联,以检测多模式输入之间的共发生并共享有用的跨模式信息。多峰甲状腺代替确定性的扫描路径,而不是通过估计实际扫描的概率分布来扫描多样性。通过三个典型的产科扫描检查进行的实验表明,新方法在探针运动指导和凝视运动预测方面的表现优于单任务学习。多模态二核还提供了一个视觉引导信号,对于224x288 US图像,错误率小于10像素。

Eye trackers can provide visual guidance to sonographers during ultrasound (US) scanning. Such guidance is potentially valuable for less experienced operators to improve their scanning skills on how to manipulate the probe to achieve the desired plane. In this paper, a multimodal guidance approach (Multimodal-GuideNet) is proposed to capture the stepwise dependency between a real-world US video signal, synchronized gaze, and probe motion within a unified framework. To understand the causal relationship between gaze movement and probe motion, our model exploits multitask learning to jointly learn two related tasks: predicting gaze movements and probe signals that an experienced sonographer would perform in routine obstetric scanning. The two tasks are associated by a modality-aware spatial graph to detect the co-occurrence among the multi-modality inputs and share useful cross-modal information. Instead of a deterministic scanning path, Multimodal-GuideNet allows for scanning diversity by estimating the probability distribution of real scans. Experiments performed with three typical obstetric scanning examinations show that the new approach outperforms single-task learning for both probe motion guidance and gaze movement prediction. Multimodal-GuideNet also provides a visual guidance signal with an error rate of less than 10 pixels for a 224x288 US image.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源