论文标题

动力学:一种针对人类姿势估算的时间优化的逆运动学技术,具有生物力学约束

KinePose: A temporally optimized inverse kinematics technique for 6DOF human pose estimation with biomechanical constraints

论文作者

Gildea, Kevin, Mercadal-Baudart, Clara, Blythman, Richard, Smolic, Aljosa, Simms, Ciaran

论文摘要

计算机视觉/基于深度学习的3D人姿势估计方法旨在从图像和视频中定位人类关节。姿势表示通常仅限于3D关节位置/平移自由度(3DOF),但是,许多潜在的生物力学应用需要另外三个旋转DOF(6DOF)。位置DOF不足以分析求解3D人类骨骼模型中的关节旋转DOF。因此,我们提出了一种时间反向运动学(IK)优化技术,以推断整个生物力学知情和特定于主体的运动链中的关节取向。为此,我们从基于位置的3D姿势估计的链接方向开出链接方向。顺序最小二乘二次编程用于解决最小化问题,涉及基于框架的姿势术语和时间术语。使用关节DOF和运动范围(ROM)限制溶液空间。我们生成3D姿势运动序列,以评估IK方法的一般准确性,并且在边界案例中的准确性。我们的时间算法以每关节角分离(MPJAS)误差平均较低(总体3.7°/关节,&1.6°/关节,对于下肢的平均值平均值)。但是,在弯曲的肘部和膝盖的情况下,我们会获得低误差,但是,具有延伸/直肢的阶段的运动序列会导致扭曲角度模棱两可。使用颞IK,我们减少了这些姿势的歧义,从而导致平均错误较低。

Computer vision/deep learning-based 3D human pose estimation methods aim to localize human joints from images and videos. Pose representation is normally limited to 3D joint positional/translational degrees of freedom (3DOFs), however, a further three rotational DOFs (6DOFs) are required for many potential biomechanical applications. Positional DOFs are insufficient to analytically solve for joint rotational DOFs in a 3D human skeletal model. Therefore, we propose a temporal inverse kinematics (IK) optimization technique to infer joint orientations throughout a biomechanically informed, and subject-specific kinematic chain. For this, we prescribe link directions from a position-based 3D pose estimate. Sequential least squares quadratic programming is used to solve a minimization problem that involves both frame-based pose terms, and a temporal term. The solution space is constrained using joint DOFs, and ranges of motion (ROMs). We generate 3D pose motion sequences to assess the IK approach both for general accuracy, and accuracy in boundary cases. Our temporal algorithm achieves 6DOF pose estimates with low Mean Per Joint Angular Separation (MPJAS) errors (3.7°/joint overall, & 1.6°/joint for lower limbs). With frame-by-frame IK we obtain low errors in the case of bent elbows and knees, however, motion sequences with phases of extended/straight limbs results in ambiguity in twist angle. With temporal IK, we reduce ambiguity for these poses, resulting in lower average errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源