论文标题
AlignsDF:手动重建的姿势签名距离字段
AlignSDF: Pose-Aligned Signed Distance Fields for Hand-Object Reconstruction
论文作者
论文摘要
最近的工作取得了令人印象深刻的进展,从单眼颜色图像中联合重建手和操纵物体。现有方法以参数网格或签名距离字段(SDF)为重点是两个替代表示。一方面,参数模型可以以有限的形状变形和网格分辨率成本从先验知识中受益。因此,网格模型可能无法精确地重建细节,例如手和物体的接触表面。另一方面,基于SDF的方法可以代表任意细节,但缺乏明确的先验。在这项工作中,我们旨在使用参数表示提供的PRIOR来改善SDF模型。特别是,我们提出了一个联合学习框架,该框架可以解散姿势和形状。我们从参数模型中获取手和对象摆姿势,并使用它们在3D空间中对齐SDF。我们表明,这种对齐的SDF可以更好地专注于重建形状细节并提高手和物体的重建精度。我们评估了我们的方法,并在挑战性的OBMAN和DEXYCB基准方面证明了对最新技术的显着改善。
Recent work achieved impressive progress towards joint reconstruction of hands and manipulated objects from monocular color images. Existing methods focus on two alternative representations in terms of either parametric meshes or signed distance fields (SDFs). On one side, parametric models can benefit from prior knowledge at the cost of limited shape deformations and mesh resolutions. Mesh models, hence, may fail to precisely reconstruct details such as contact surfaces of hands and objects. SDF-based methods, on the other side, can represent arbitrary details but are lacking explicit priors. In this work we aim to improve SDF models using priors provided by parametric representations. In particular, we propose a joint learning framework that disentangles the pose and the shape. We obtain hand and object poses from parametric models and use them to align SDFs in 3D space. We show that such aligned SDFs better focus on reconstructing shape details and improve reconstruction accuracy both for hands and objects. We evaluate our method and demonstrate significant improvements over the state of the art on the challenging ObMan and DexYCB benchmarks.