论文标题

学习系列 - 平行查找表,可高效图像超分辨率

Learning Series-Parallel Lookup Tables for Efficient Image Super-Resolution

论文作者

Ma, Cheng, Zhang, Jingyi, Zhou, Jie, Lu, Jiwen

论文摘要

查找表(LUT)由于低计算成本和硬件独立性的宝贵特征,在低级视觉任务中显示了其在低级视觉任务中的功效。但是,最近通过查找表解决了单个图像超分辨率(SISR)问题的尝试受到小型接收场大小的高度限制。此外,他们的单层查找表的框架限制了模型的扩展和概括能力。在本文中,我们提出了一个串联 - 平行查找表(Splut)的框架,以减轻上述问题并实现有效的图像超分辨率。一方面,我们级联多个查找表,以扩大每个提取特征向量的接受场。另一方面,我们提出了一个并行网络,该网络包括两个级联查找表的分支,它们处理输入低分辨率图像的不同组件。通过这样做,两个分支机构相互协作,并在建立查找表时弥补了离散输入像素的精确损失。与以前的基于查找表的方法相比,我们的框架具有更强的表示能力,具有更灵活的体系结构。此外,我们不再需要引入冗余计算的插值方法,以便我们的方法可以实现更快的推理速度。五个流行的基准数据集的广泛实验结果表明,我们的方法以更有效的方式获得了卓越的SISR性能。该代码可在https://github.com/zhjy2016/splut上找到。

Lookup table (LUT) has shown its efficacy in low-level vision tasks due to the valuable characteristics of low computational cost and hardware independence. However, recent attempts to address the problem of single image super-resolution (SISR) with lookup tables are highly constrained by the small receptive field size. Besides, their frameworks of single-layer lookup tables limit the extension and generalization capacities of the model. In this paper, we propose a framework of series-parallel lookup tables (SPLUT) to alleviate the above issues and achieve efficient image super-resolution. On the one hand, we cascade multiple lookup tables to enlarge the receptive field of each extracted feature vector. On the other hand, we propose a parallel network which includes two branches of cascaded lookup tables which process different components of the input low-resolution images. By doing so, the two branches collaborate with each other and compensate for the precision loss of discretizing input pixels when establishing lookup tables. Compared to previous lookup table-based methods, our framework has stronger representation abilities with more flexible architectures. Furthermore, we no longer need interpolation methods which introduce redundant computations so that our method can achieve faster inference speed. Extensive experimental results on five popular benchmark datasets show that our method obtains superior SISR performance in a more efficient way. The code is available at https://github.com/zhjy2016/SPLUT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源