论文标题

CTVR-EHO TDA-IPH拓扑优化的卷积视觉复发网络,用于脑肿瘤分割和分类

CTVR-EHO TDA-IPH Topological Optimized Convolutional Visual Recurrent Network for Brain Tumor Segmentation and Classification

论文作者

Joshi, Dhananjay, Singh, Bhupesh Kumar, Nagwanshi, Kapil Kumar, Choubey, Nitin S.

论文摘要

在当今的医疗保健世界中,脑肿瘤检测已变得普遍。但是,手动脑肿瘤分类方法是耗时的。因此,医学领域的许多研究人员使用了深层卷积神经网络(DCNN)来进行准确的诊断并有助于患者的治疗。传统技术存在诸如过度拟合和无法提取必要功能之类的问题。为了克服这些问题,我们开发了基于拓扑数据分析的持久性同源性(TDA-IPH)和卷积转移学习和视觉复发性学习,并通过大象放牧优化的高参数调整(CTVR-EHO)模型,用于脑肿瘤分割和分类。最初,基于拓扑数据的改进的持续同源性旨在分割脑肿瘤图像。然后,从分段的图像中,使用TL通过Alexnet模型和双向视觉长期记忆(BI-VLSTM)提取特征。接下来,使用大象放牧优化(EHO)来调整两个网络的超参数以获得最佳结果。最后,使用SoftMax激活层对提取的特征进行连接和分类。该提出的CTVR-EHO和TDA-IPH方法的仿真结果是根据精度,准确性,召回,损失和F得分指标分析的。与其他现有的脑肿瘤分割和分类模型相比,拟议的CTVR-EHO和TDA-IPH方法表现出很高的精度(99.8%),高召回率(99.23%),高精度(99.67%)和高F分数(99.59%)。

In today's world of health care, brain tumor detection has become common. However, the manual brain tumor classification approach is time-consuming. So Deep Convolutional Neural Network (DCNN) is used by many researchers in the medical field for making accurate diagnoses and aiding in the patient's treatment. The traditional techniques have problems such as overfitting and the inability to extract necessary features. To overcome these problems, we developed the Topological Data Analysis based Improved Persistent Homology (TDA-IPH) and Convolutional Transfer learning and Visual Recurrent learning with Elephant Herding Optimization hyper-parameter tuning (CTVR-EHO) models for brain tumor segmentation and classification. Initially, the Topological Data Analysis based Improved Persistent Homology is designed to segment the brain tumor image. Then, from the segmented image, features are extracted using TL via the AlexNet model and Bidirectional Visual Long Short-Term Memory (Bi-VLSTM). Next, elephant Herding Optimization (EHO) is used to tune the hyperparameters of both networks to get an optimal result. Finally, extracted features are concatenated and classified using the softmax activation layer. The simulation result of this proposed CTVR-EHO and TDA-IPH method is analyzed based on precision, accuracy, recall, loss, and F score metrics. When compared to other existing brain tumor segmentation and classification models, the proposed CTVR-EHO and TDA-IPH approaches show high accuracy (99.8%), high recall (99.23%), high precision (99.67%), and high F score (99.59%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源