论文标题

使用网状卷积神经网络未来未破裂的颅内动脉瘤增长预测

Future Unruptured Intracranial Aneurysm Growth Prediction using Mesh Convolutional Neural Networks

论文作者

Timmins, Kimberley M., Kamphuis, Maarten J., Vos, Iris N., Velthuis, Birgitta K., van der Schaaf, Irene C., Kuijf, Hugo J.

论文摘要

颅内动脉瘤(UIA)的生长是破裂的预测指标。因此,为了进一步的成像监视和治疗计划,重要的是能够根据初始基线飞行时间MRA(TOF-MRA)来预测UIA是否会增长。众所周知,UIA的大小和形状是动脉瘤生长和/或破裂的预测指标。我们对使用网格卷积神经网络进行基线TOF-MRA的未来UIA增长预测进行了可行性研究。我们包括151个TOF-MRA,其中169个UIA基于生长的临床定义,其中49个UIA被归类为生长,而120个UIA被归类为稳定(随访扫描中的大小> 1 mm)。从TOF-MRAS分割了UIA,并自动生成网格。我们研究了仅UIA网格和包括UIA和周围母体血管在内的利用区域(ROI)网格的输入。我们开发了一个分类模型来预测将会增长或保持稳定的UIA。该模型由一个网状卷积神经网络组成,包括形状索引和曲面的其他新型输入边缘特征,这些特征描述了表面拓扑。已经研究了输入边缘中点坐标是否影响模型性能。最高AUC(63.8%)的模型是使用具有输入边缘中点坐标特征的UIA网格(平均F1得分= 62.3%,准确度= 66.9%,灵敏度= 57.3%,特异性= 70.8%)。我们提出了一个基于网状卷积神经网络的未来UIA增长预测模型,结果令人鼓舞。

The growth of unruptured intracranial aneurysms (UIAs) is a predictor of rupture. Therefore, for further imaging surveillance and treatment planning, it is important to be able to predict if an UIA is likely to grow based on an initial baseline Time-of-Flight MRA (TOF-MRA). It is known that the size and shape of UIAs are predictors of aneurysm growth and/or rupture. We perform a feasibility study of using a mesh convolutional neural network for future UIA growth prediction from baseline TOF-MRAs. We include 151 TOF-MRAs, with 169 UIAs where 49 UIAs were classified as growing and 120 as stable, based on the clinical definition of growth (>1 mm increase in size in follow-up scan). UIAs were segmented from TOF-MRAs and meshes were automatically generated. We investigate the input of both UIA mesh only and region-of-interest (ROI) meshes including UIA and surrounding parent vessels. We develop a classification model to predict UIAs that will grow or remain stable. The model consisted of a mesh convolutional neural network including additional novel input edge features of shape index and curvedness which describe the surface topology. It was investigated if input edge mid-point co-ordinates influenced the model performance. The model with highest AUC (63.8%) for growth prediction was using UIA meshes with input edge mid-point co-ordinate features (average F1 score = 62.3%, accuracy = 66.9%, sensitivity = 57.3%, specificity = 70.8%). We present a future UIA growth prediction model based on a mesh convolutional neural network with promising results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源