论文标题

适应异质群中的勘探 - 开发平衡:跟踪回避目标

Adapting the Exploration-Exploitation Balance in Heterogeneous Swarms: Tracking Evasive Targets

论文作者

Kwa, Hian Lee, Babineau, Victor, Philippot, Julien, Bouffanais, Roland

论文摘要

在各种任务和场景中使用多机器人系统的使用越来越兴趣。这种系统的主要吸引力是它们的灵活性,鲁棒性和可扩展性。系统模块化是一个经常被忽视但有希望的功能,它为利用代理专业化提供了可能性,同时还可以实现系统级别的升级。但是,改变代理的能力可以改变最大化系统性能所需的勘探探索平衡。在这里,我们研究了群异质性对其探索探索平衡的影响,同时在对多个移动目标框架的合作多机器人观察下跟踪多个快速移动的回避目标。为此,我们使用分散的搜索和跟踪策略,并具有可调节水平的探索和剥削水平。通过间接调整平衡,我们首先确认这两个关键的竞争动作之间存在最佳平衡。接下来,通过用更快的速度替换较慢的移动剂,我们表明该系统表现出性能的改进,而没有对原始策略进行任何修改。此外,由于更快的代理商进行了额外的剥削量,我们证明,通过降低代理的连通性水平,可以进一步改善异质系统的性能,以促进探索性动作的行为。此外,在研究蜂群密度的影响时,我们表明,加快代理的添加可以抵消代理总数的减少,同时保持跟踪性能的水平。最后,我们探索使用差异化策略来利用群体的异质性质的挑战。

There has been growing interest in the use of multi-robot systems in various tasks and scenarios. The main attractiveness of such systems is their flexibility, robustness, and scalability. An often overlooked yet promising feature is system modularity, which offers the possibility to harness agent specialization, while also enabling system-level upgrades. However, altering the agents' capacities can change the exploration-exploitation balance required to maximize the system's performance. Here, we study the effect of a swarm's heterogeneity on its exploration-exploitation balance while tracking multiple fast-moving evasive targets under the Cooperative Multi-Robot Observation of Multiple Moving Targets framework. To this end, we use a decentralized search and tracking strategy with adjustable levels of exploration and exploitation. By indirectly tuning the balance, we first confirm the presence of an optimal balance between these two key competing actions. Next, by substituting slower moving agents with faster ones, we show that the system exhibits a performance improvement without any modifications to the original strategy. In addition, owing to the additional amount of exploitation carried out by the faster agents, we demonstrate that a heterogeneous system's performance can be further improved by reducing an agent's level of connectivity, to favor the conduct of exploratory actions. Furthermore, in studying the influence of the density of swarming agents, we show that the addition of faster agents can counterbalance a reduction in the overall number of agents while maintaining the level of tracking performance. Finally, we explore the challenges of using differentiated strategies to take advantage of the heterogeneous nature of the swarm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源