论文标题
基于Memristor的尖峰神经网络中的文本分类
Text Classification in Memristor-based Spiking Neural Networks
论文作者
论文摘要
新兴的非易失性存储器设备的备忘录在神经形态硬件设计中表现出了有希望的潜力,尤其是在尖峰神经网络(SNN)硬件实现方面。基于Memristor的SNN已成功应用于各种应用程序,包括图像分类和模式识别。但是,在文本分类中实施基于备忘录的SNN仍在探索中。主要原因之一是,由于缺乏有效的学习规则和不介意性的非理想性,培训基于备忘录的SNN进行文本分类是昂贵的。为了解决这些问题,并加速了在文本分类应用程序中探索基于备忘录的尖峰神经网络的研究,我们使用经验的Memristor模型开发了使用虚拟备忘录阵列的仿真框架。我们使用此框架来演示IMDB电影评论数据集中的情感分析任务。我们采用两种方法,通过将预训练的人工神经网络(ANN)转换为基于备忘录的SNN,或2)直接训练基于备忘录的SNN,以获取训练有素的尖峰神经网络:1)通过将预训练的人工神经网络(ANN)转换为基于Memristor的SNN。这两种方法可以在两种情况下应用:离线分类和在线培训。我们通过将预训练的ANN转换为基于Memristor的SNN和84.86%通过直接训练基于Memristor的SNN的分类准确性,鉴于等效ANN的基线训练精度为86.02%,我们实现了84.86%的分类精度。我们得出的结论是,可以在从ANN到SNN的仿真以及从非同步突触到数据驱动的Memristive突触中实现相似的分类精度。我们还研究了诸如尖峰列车长度,读取噪声和重量更新停止条件之类的全局参数如何影响两种方法的神经网络。
Memristors, emerging non-volatile memory devices, have shown promising potential in neuromorphic hardware designs, especially in spiking neural network (SNN) hardware implementation. Memristor-based SNNs have been successfully applied in a wide range of various applications, including image classification and pattern recognition. However, implementing memristor-based SNNs in text classification is still under exploration. One of the main reasons is that training memristor-based SNNs for text classification is costly due to the lack of efficient learning rules and memristor non-idealities. To address these issues and accelerate the research of exploring memristor-based spiking neural networks in text classification applications, we develop a simulation framework with a virtual memristor array using an empirical memristor model. We use this framework to demonstrate a sentiment analysis task in the IMDB movie reviews dataset. We take two approaches to obtain trained spiking neural networks with memristor models: 1) by converting a pre-trained artificial neural network (ANN) to a memristor-based SNN, or 2) by training a memristor-based SNN directly. These two approaches can be applied in two scenarios: offline classification and online training. We achieve the classification accuracy of 85.88% by converting a pre-trained ANN to a memristor-based SNN and 84.86% by training the memristor-based SNN directly, given that the baseline training accuracy of the equivalent ANN is 86.02%. We conclude that it is possible to achieve similar classification accuracy in simulation from ANNs to SNNs and from non-memristive synapses to data-driven memristive synapses. We also investigate how global parameters such as spike train length, the read noise, and the weight updating stop conditions affect the neural networks in both approaches.