论文标题
大规模保守的欧拉尔 - 拉格朗日朗格 - kutta不连续的Galerkin方法,用于较长的时间踏上的波动方程
A mass conservative Eulerian-Lagrangian Runge-Kutta discontinuous Galerkin method for wave equations with large time stepping
论文作者
论文摘要
我们为波动方程提出了一种Eulerian-Lagrangian(El)Runge-Kutta(RK)不连续的Galerkin(DG)方法。该方法是基于用于运输问题的ELDG方法设计的[J.计算。 PHY。 446:110632,2021。波方程可以写为一阶双曲系统。考虑到每个特征家族,ELDG的直接应用将是转换为特征变量,将它们在相关的相关时空区域中进化,并将其转换回原始变量。但是,在一般环境中无法保证群众保护。在本文中,我们通过将每个变量分解为两个部分来制定质量保守的半差异ELDG方法,每个变量都与不同的特征家族相关联。结果,以EL的方式进化了四个不同的数量,并重新组合以更新解决方案。完全离散的方案是通过使用LINES RK方法来制定的,中间RK解决方案在后台网格上进行了更新。提出了1D和2D波方程的数值结果,以证明所提出的ELDG方法的性能。这些包括高阶空间和时间准确性,稳定性具有超长时间的踏板尺寸以及大规模保守性能。
We propose an Eulerian-Lagrangian (EL) Runge-Kutta (RK) discontinuous Galerkin (DG) method for wave equations. The method is designed based on the ELDG method for transport problems [J. Comput. Phy. 446: 110632, 2021.], which tracks solution along approximations to characteristics in the DG framework, allowing extra large time stepping sizes with stability. The wave equation can be written as a first order hyperbolic system. Considering each characteristic family, a straightforward application of ELDG will be to transform to the characteristic variables, evolve them on associated characteristic related space-time regions, and transform them back to the original variables. However, the mass conservation could not be guaranteed in a general setting. In this paper, we formulate a mass conservative semi-discrete ELDG method by decomposing each variable into two parts, each of them associated with a different characteristic family. As a result, four different quantities are evolved in EL fashion and recombined to update the solution. The fully discrete scheme is formulated by using method-of-lines RK methods, with intermediate RK solutions updated on the background mesh. Numerical results on 1D and 2D wave equations are presented to demonstrate the performance of the proposed ELDG method. These include the high order spatial and temporal accuracy, stability with extra large time stepping size, and mass conservative property.