论文标题

在二维中的几何非线性弹性夹杂物的最小能量

Minimal Energy for Geometrically Nonlinear Elastic Inclusions in Two Dimensions

论文作者

Akramov, Ibrokhimbek, Knüpfer, Hans, Kružík, Martin, Rüland, Angkana

论文摘要

我们关注的是等等问题的变体,在我们的环境中,这是在弹性上的几何非线性两孔问题中产生的。更确切地说,我们研究了固定体积的弹性包含能量的最佳尺度,该固定体积由表面和(各向异性)弹性贡献确定。遵循\ cite {cs}和\ cite {knuepferkohn-2011}的想法,我们通过调用两孔刚度参数和覆盖结果来得出较低的缩放。上限是从众所周知的晶状体弹性包含的结构中。

We are concerned with a variant of the isoperimetric problem, which in our setting arises in a geometrically nonlinear two-well problem in elasticity. More precisely, we investigate the optimal scaling of the energy of an elastic inclusion of a fixed volume for which the energy is determined by a surface and an (anisotropic) elastic contribution. Following ideas from \cite{CS} and \cite{KnuepferKohn-2011}, we derive the lower scaling bound by invoking a two-well rigidity argument and a covering result. The upper bound follows from a well-known construction for a lens-shaped elastic inclusion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源