论文标题

与进化神经网络应用的形状变形非线性溶液的快速可扩展计算

Fast and scalable computation of shape-morphing nonlinear solutions with application to evolutional neural networks

论文作者

Anderson, William, Farazmand, Mohammad

论文摘要

我们开发快速,可扩展的方法来计算还原阶的非线性溶液(RONS)。最近提出了RONS作为时间依赖性偏微分方程(PDE)的减少顺序建模的框架,其中模式非线性地取决于一组时间变化的参数。 Rons使用一组普通的微分方程(ODE)作为参数,以最佳发展模式的形状以适应PDE的解决方案。该方法已经证明,在解决诸如较高的流动和高维PDE之类的具有挑战性的问题方面非常有效。但是,随着参数数量的增长,整合Rons方程,甚至其形成也变得越来越高。在这里,我们开发了三种独立的方法来解决这些计算瓶颈:符号rons,搭配Rons和正规化的Rons。我们在两个示例中证明了这些方法的功效:高维度的fokker-planck方程和库拉莫托 - sivashinsky方程。在这两种情况下,我们都观察到所提出的方法导致了加速和准确性的几个数量级。我们提出的方法通过使RONS可以使用RONS来精确的线性和非线性PDE的数值解决方案,从而扩展了RON的适用性。最后,作为Rons的特殊情况,我们讨论了其在PDE解决方案被神经网络近似的问题上的应用,而时间相关的参数是网络的权重和偏见。 RONS方程决定了网络参数的最佳演变,而无需进行任何培训。

We develop fast and scalable methods for computing reduced-order nonlinear solutions (RONS). RONS was recently proposed as a framework for reduced-order modeling of time-dependent partial differential equations (PDEs), where the modes depend nonlinearly on a set of time-varying parameters. RONS uses a set of ordinary differential equations (ODEs) for the parameters to optimally evolve the shape of the modes to adapt to the PDE's solution. This method has already proven extremely effective in tackling challenging problems such as advection-dominated flows and high-dimensional PDEs. However, as the number of parameters grow, integrating the RONS equation and even its formation become computationally prohibitive. Here, we develop three separate methods to address these computational bottlenecks: symbolic RONS, collocation RONS and regularized RONS. We demonstrate the efficacy of these methods on two examples: Fokker-Planck equation in high dimensions and the Kuramoto-Sivashinsky equation. In both cases, we observe that the proposed methods lead to several orders of magnitude in speedup and accuracy. Our proposed methods extend the applicability of RONS beyond reduced-order modeling by making it possible to use RONS for accurate numerical solution of linear and nonlinear PDEs. Finally, as a special case of RONS, we discuss its application to problems where the PDE's solution is approximated by a neural network, with the time-dependent parameters being the weights and biases of the network. The RONS equations dictate the optimal evolution of the network's parameters without requiring any training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源