论文标题

在神经网络中用于服装碰撞处理的排斥力单元

A Repulsive Force Unit for Garment Collision Handling in Neural Networks

论文作者

Tan, Qingyang, Zhou, Yi, Wang, Tuanfeng, Ceylan, Duygu, Sun, Xin, Manocha, Dinesh

论文摘要

尽管最近成功,但基于学习的深度学习方法用于预测身体运动下的3D服装变形,却遇到了服装与身体之间的互穿问题。为了解决这个问题,我们提出了一种新颖的碰撞处理神经网络层,称为排斥力单位(RECU)。基于基础主体的签名距离函数(SDF)和当前的服装顶点位置,Repu预测了将任何互穿的顶点推向无冲突的配置,同时保留细节细节。我们表明,RECU可以通过可训练的参数进行区分,并且可以集成到预测3D服装变形的不同网络骨架中。我们的实验表明,与基于碰撞损失或后处理优化的先前方法相比,RECU可显着减少身体与服装之间的碰撞数量,并更好地保留几何细节。

Despite recent success, deep learning-based methods for predicting 3D garment deformation under body motion suffer from interpenetration problems between the garment and the body. To address this problem, we propose a novel collision handling neural network layer called Repulsive Force Unit (ReFU). Based on the signed distance function (SDF) of the underlying body and the current garment vertex positions, ReFU predicts the per-vertex offsets that push any interpenetrating vertex to a collision-free configuration while preserving the fine geometric details. We show that ReFU is differentiable with trainable parameters and can be integrated into different network backbones that predict 3D garment deformations. Our experiments show that ReFU significantly reduces the number of collisions between the body and the garment and better preserves geometric details compared to prior methods based on collision loss or post-processing optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源