论文标题
一维镶嵌晶格中的波数据包的准振动扩散
Quasi-resonant diffusion of wave packets in one-dimensional disordered mosaic lattices
论文作者
论文摘要
我们以数值方式研究了在具有镶嵌性调制的随机现场电位的一维半无限晶格上的波数据包的时间演变,这些电势的特征在于整数值调制周期$κ$和疾病强度$ w $。对于具有中央能量$ e_0 $和较小频谱宽度的高斯波数据包,我们对偶然的时间依赖性反射率,$ \ langle r(t)\ rangle $进行了广泛的数值计算,对于$ e_0 $,$κ$和$ w $和$ w $。我们发现,在所有情况下,$ \ langle r(t)\ rangle $的长期行为遵守$ t^{ - γ} $的功率定律。在镶嵌调制的情况下,几乎所有$ e_0 $的值的$γ$等于2,这意味着安德森本地化的发作,而以有限数量的离散值$ e_0 $取决于$κ$,$γ$,$γ$ 3/2,这意味着3/2,这是经典扩散的开始。这种现象与障碍的强度无关,并且以准共振的方式产生,因此$γ$在狭窄的能量范围内从3/2到2迅速变化,因为$ e_0 $差异与准谐和值不等。我们推断出一个简单的分析公式,用于准共和力能,并根据随机性和频带结构之间的相互作用以及波函数的节点结构提供了对定位现象的解释。我们使用对平均参与率的有限尺寸缩放分析来探索国家在准共振能量下的性质,发现国家既不是扩展的也不是指数级的,而是ciritical状态。
We investigate numerically the time evolution of wave packets incident on one-dimensional semi-infinite lattices with mosaic modulated random on-site potentials, which are characterized by the integer-valued modulation period $κ$ and the disorder strength $W$. For Gaussian wave packets with the central energy $E_0$ and a small spectral width, we perform extensive numerical calculations of the disorder-averaged time-dependent reflectance, $\langle R(t)\rangle$, for various values of $E_0$, $κ$, and $W$. We find that the long-time behavior of $\langle R(t)\rangle$ obeys a power law of the form $t^{-γ}$ in all cases. In the presence of the mosaic modulation, $γ$ is equal to 2 for almost all values of $E_0$, implying the onset of the Anderson localization, while at a finite number of discrete values of $E_0$ dependent on $κ$, $γ$ approaches 3/2, implying the onset of the classical diffusion. This phenomenon is independent of the disorder strength and arises in a quasi-resonant manner such that $γ$ varies rapidly from 3/2 to 2 in a narrow energy range as $E_0$ varies away from the quasi-resonance values. We deduce a simple analytical formula for the quasi-resonance energies and provide an explanation of the delocalization phenomenon based on the interplay between randomness and band structure and the node structure of the wave functions. We explore the nature of the states at the quasi-resonance energies using a finite-size scaling analysis of the average participation ratio and find that the states are neither extended nor exponentially localized, but ciritical states..