论文标题
机械超材料中的离散呼吸器
Discrete breathers in a mechanical metamaterial
论文作者
论文摘要
我们考虑了一个先前实现的离散模型,该模型描述了一种机械超材料,该模型由柔性铰链连接的一对刚性单元链组成。在分析模型的线性频带结构后,我们确定了该系统可能具有离散的呼吸溶液的参数状态,并在光学分散带和声学分散带之间的差距内部具有频率。我们为多种不同的参数制度计算这种类型的数值解决方案,并研究其性质和稳定性。我们的发现表明,在实验可拖动的范围内进行适当的参数调整后,该系统表现出大量离散的呼吸器,除了其他稳定性变化的机制(例如鞍形和汉密尔顿啤酒花hopf bifurcations)外,具有多个溶液分支,具有倍增和对称性的分叉。相关稳定性分析通过直接数值计算来确认系统的动力学特性,并为潜在的进一步实验探索了这种丰富的非线性动力学晶格设置铺平了道路。
We consider a previously experimentally realized discrete model that describes a mechanical metamaterial consisting of a chain of pairs of rigid units connected by flexible hinges. Upon analyzing the linear band structure of the model, we identify parameter regimes in which this system may possess discrete breather solutions with frequencies inside the gap between optical and acoustic dispersion bands. We compute numerically exact solutions of this type for several different parameter regimes and investigate their properties and stability. Our findings demonstrate that upon appropriate parameter tuning within experimentally tractable ranges, the system exhibits a plethora of discrete breathers, with multiple branches of solutions that feature period-doubling and symmetry-breaking bifurcations, in addition to other mechanisms of stability change such as saddle-center and Hamiltonian Hopf bifurcations. The relevant stability analysis is corroborated by direct numerical computations examining the dynamical properties of the system and paving the way for potential further experimental exploration of this rich nonlinear dynamical lattice setting.