论文标题

线性椭圆形偏微分方程的自适应网格近似与PDE-Greedy内核方法

Adaptive meshfree approximation for linear elliptic partial differential equations with PDE-greedy kernel methods

论文作者

Wenzel, Tizian, Winkle, Daniel, Santin, Gabriele, Haasdonk, Bernard

论文摘要

我们通过对称内核搭配考虑了椭圆形部分微分方程(PDE)的边界值问题解决方案(BVP)的无网格近似。我们讨论了选择点的选择的重要性,特别是使用贪婪的内核方法。我们介绍了PDE-Greedy选择标准的量表,该标准概括了现有技术,例如PDE- $ P $ - 果岭和PDE- $ f $ - 果岭选择的规则。对于这些贪婪的选择标准,我们根据贪婪选择点的数量为近似误差提供了界限,并分析了相应的收敛速率。这是通过对特殊BVP点评估功能集的Kolmogorov宽度进行新的分析来实现的。尤其是,我们证明,使用BVP的右手侧函数的目标数据依赖性算法比目标数据独立PDE- $ P $ - 绿色表现出更快的收敛速率。 PDE- $ f $ - 梅迪的收敛速率具有独立尺寸的速率,这使得可以减轻维度的诅咒。这些贪婪算法的优点由数值示例强调。

We consider meshless approximation for solutions of boundary value problems (BVPs) of elliptic Partial Differential Equations (PDEs) via symmetric kernel collocation. We discuss the importance of the choice of the collocation points, in particular by using greedy kernel methods. We introduce a scale of PDE-greedy selection criteria that generalizes existing techniques, such as the PDE-$P$-greedy and the PDE-$f$-greedy rules for collocation point selection. For these greedy selection criteria we provide bounds on the approximation error in terms of the number of greedily selected points and analyze the corresponding convergence rates. This is achieved by a novel analysis of Kolmogorov widths of special sets of BVP point-evaluation functionals. Especially, we prove that target-data dependent algorithms that make use of the right hand side functions of the BVP exhibit faster convergence rates than the target-data independent PDE-$P$-greedy. The convergence rate of the PDE-$f$-greedy possesses a dimension independent rate, which makes it amenable to mitigate the curse of dimensionality. The advantages of these greedy algorithms are highlighted by numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源