论文标题

在与质量的一般线性群有关的线性多项式的galois组上

On Galois groups of linearized polynomials related to the general linear group of prime degree

论文作者

Gow, Rod, McGuire, Gary

论文摘要

令$ l(x)$为任何$ q $ linearized多项式,$ \ mathbb {f} _q $,$ q^n $。我们考虑$ l(x)+tx $ over $ \ mathbb {f} _q(t)$的Galois组,其中$ t $超过$ \ mathbb {f} _q $。我们证明,当$ n $是Prime时,Galois组始终为$ gl(n,q)$,除非$ l(x)= x^{q^n} $。同等地,我们证明了$ l(x)/x $的算术单曲集群为$ gl(n,q)$。

Let $L(x)$ be any $q$-linearized polynomial with coefficients in $\mathbb{F}_q$, of degree $q^n$. We consider the Galois group of $L(x)+tx$ over $\mathbb{F}_q(t)$, where $t$ is transcendental over $\mathbb{F}_q$. We prove that when $n$ is a prime, the Galois group is always $GL(n,q)$, except when $L(x)=x^{q^n}$. Equivalently, we prove that the arithmetic monodromy group of $L(x)/x$ is $GL(n,q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源