论文标题
使用随机森林分类器的高度多孔多相材料的FIB/SEM托表图像分类
Classification of FIB/SEM-tomography images for highly porous multiphase materials using random forest classifiers
论文作者
论文摘要
FIB/SEM层析成像代表了电池研究和许多其他领域中三维纳米结构表征表征的必不可少的工具。但是,在许多情况下,对比度和3D分类/重建问题出现,这极大地限制了该技术的适用性,尤其是在多孔材料上,例如电池或燃料电池中用于电极材料的材料。区分不同的组件(例如主动LI存储颗粒和碳/粘合剂材料)很困难,并且通常可以防止对图像数据进行可靠的定量分析,甚至可能导致关于结构 - 托管关系的错误结论。在这项贡献中,我们提出了一种新型的数据分类方法,该方法是通过FIB/SEM层析成像获得的三维图像数据及其在NMC电池电极材料中的应用。我们使用两个不同的图像信号,即Angled SE2腔室检测器和Inlens检测器信号的信号,将信号结合在一起并训练一个随机森林,即特定的机器学习算法。我们证明,这种方法可以克服适用于多相测量的现有技术的当前局限性,并且即使当前最先进的技术失败或对大型训练集的需求,也可以进行定量数据重建。这种方法可能会作为使用FIB/SEM断层扫描的未来研究的指南。
FIB/SEM tomography represents an indispensable tool for the characterization of three-dimensional nanostructures in battery research and many other fields. However, contrast and 3D classification/reconstruction problems occur in many cases, which strongly limits the applicability of the technique especially on porous materials, like those used for electrode materials in batteries or fuel cells. Distinguishing the different components like active Li storage particles and carbon/binder materials is difficult and often prevents a reliable quantitative analysis of image data, or may even lead to wrong conclusions about structure-property relationships. In this contribution, we present a novel approach for data classification in three-dimensional image data obtained by FIB/SEM tomography and its applications to NMC battery electrode materials. We use two different image signals, namely the signal of the angled SE2 chamber detector and the Inlens detector signal, combine both signals and train a random forest, i.e. a particular machine learning algorithm. We demonstrate that this approach can overcome current limitations of existing techniques suitable for multi-phase measurements and that it allows for quantitative data reconstruction even where current state-of the art techniques fail, or demand for large training sets. This approach may yield as guideline for future research using FIB/SEM tomography.