论文标题
渐进式Voronoi图细分:迈向无示例性课程学习的整体几何框架
Progressive Voronoi Diagram Subdivision: Towards A Holistic Geometric Framework for Exemplar-free Class-Incremental Learning
论文作者
论文摘要
无示例性课程学习(CIL)是一个具有挑战性的问题,因为严格禁止从先前阶段进行排练数据,从而导致灾难性忘记深度神经网络(DNNS)。在本文中,我们提出了ivoro,这是CIL的整体框架,源自计算几何形状。我们发现Voronoi图(VD)是一个用于空间细分的经典模型,对于解决CIL问题特别有力,因为VD本身可以以增量的方式构造,而新添加的站点(类)只会影响接近的类别,从而使非连接类难以忘记。此外,为了找到一个更好的VD构建中心,我们使用功率图与VD共同结合DNN,并证明可以通过使用除法算法算法集成本地DNN模型来优化VD结构。此外,我们的VD结构不仅限于深度特征空间,但也适用于多个中间特征空间,将VD推广为多中心VD(CIVD),可有效捕获DNN的多元元素特征。重要的是,Ivoro还能够处理不确定性感知的测试时间Voronoi细胞分配,并且在几何不确定性和预测精度之间表现出很高的相关性(高达〜0.9)。与最先进的非exemememplar CIL方法相比,Ivoro将所有内容汇总在一起,分别在CIFAR-100,Tinyimagenet和Imagenet-Sububset方面取得了高达25.26%,37.09%和33.21%的改善。总之,Ivoro可以实现高度准确,保护隐私和几何解释的CIL,当禁止使用跨相数据共享时,这特别有用,例如在医疗应用中。我们的代码可在https://machunwei.github.io/ivoro上找到。
Exemplar-free Class-incremental Learning (CIL) is a challenging problem because rehearsing data from previous phases is strictly prohibited, causing catastrophic forgetting of Deep Neural Networks (DNNs). In this paper, we present iVoro, a holistic framework for CIL, derived from computational geometry. We found Voronoi Diagram (VD), a classical model for space subdivision, is especially powerful for solving the CIL problem, because VD itself can be constructed favorably in an incremental manner -- the newly added sites (classes) will only affect the proximate classes, making the non-contiguous classes hardly forgettable. Further, in order to find a better set of centers for VD construction, we colligate DNN with VD using Power Diagram and show that the VD structure can be optimized by integrating local DNN models using a divide-and-conquer algorithm. Moreover, our VD construction is not restricted to the deep feature space, but is also applicable to multiple intermediate feature spaces, promoting VD to be multi-centered VD (CIVD) that efficiently captures multi-grained features from DNN. Importantly, iVoro is also capable of handling uncertainty-aware test-time Voronoi cell assignment and has exhibited high correlations between geometric uncertainty and predictive accuracy (up to ~0.9). Putting everything together, iVoro achieves up to 25.26%, 37.09%, and 33.21% improvements on CIFAR-100, TinyImageNet, and ImageNet-Subset, respectively, compared to the state-of-the-art non-exemplar CIL approaches. In conclusion, iVoro enables highly accurate, privacy-preserving, and geometrically interpretable CIL that is particularly useful when cross-phase data sharing is forbidden, e.g. in medical applications. Our code is available at https://machunwei.github.io/ivoro.