论文标题

通过置换测试弥合深度学习和假设驱动分析之间的差距

Bridging the Gap between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing

论文作者

Paschali, Magdalini, Zhao, Qingyu, Adeli, Ehsan, Pohl, Kilian M.

论文摘要

神经科学研究的一种基本方法是基于神经心理学和行为措施,即某些因素(例如,与生活事件相关)是否与结果(例如抑郁症)有关。近年来,深度学习已成为通过预测一系列因素的结果并确定推动预测的最“信息性”的结果,成为进行此类分析的潜在替代方法。但是,这种方法的影响有限,因为其发现与支持假设的因素的统计意义无关。在本文中,我们根据排列测试的概念提出了一种灵活且可扩展的方法,该方法将假设检验整合到数据驱动的深度学习分析中。我们将我们的方法应用于对青春期酒精和神经发育联盟(NCANDA)的621名青少年参与者的年度自我报告评估,以预测负面价,这是根据NIMH研究领域标准(RDOC)的严重抑郁症的症状。我们的方法成功地识别了进一步解释症状的危险因素类别。

A fundamental approach in neuroscience research is to test hypotheses based on neuropsychological and behavioral measures, i.e., whether certain factors (e.g., related to life events) are associated with an outcome (e.g., depression). In recent years, deep learning has become a potential alternative approach for conducting such analyses by predicting an outcome from a collection of factors and identifying the most "informative" ones driving the prediction. However, this approach has had limited impact as its findings are not linked to statistical significance of factors supporting hypotheses. In this article, we proposed a flexible and scalable approach based on the concept of permutation testing that integrates hypothesis testing into the data-driven deep learning analysis. We apply our approach to the yearly self-reported assessments of 621 adolescent participants of the National Consortium of Alcohol and Neurodevelopment in Adolescence (NCANDA) to predict negative valence, a symptom of major depressive disorder according to the NIMH Research Domain Criteria (RDoC). Our method successfully identifies categories of risk factors that further explain the symptom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源