论文标题
半监督部分差分运算符和动态流的学习
Semi-supervised Learning of Partial Differential Operators and Dynamical Flows
论文作者
论文摘要
动力学系统的演变通常由非线性偏微分方程(PDE)控制,在模拟框架中,其解决方案需要大量的计算资源。在这项工作中,我们提出了一种新颖的方法,该方法将超网络求解器与傅立叶神经操作员体系结构相结合。我们的方法分别处理时间和空间。结果,它通过采用部分差分运算符的一般组成特性,成功地在连续时间步骤中成功传播了初始条件。在先前的工作之后,在特定时间点提供监督。我们在各种时间演化PDE上测试我们的方法,包括一个,两个和三个空间维度中的非线性流体流。结果表明,新方法在监督点的时间点提高了学习准确性,并能够插入任何中间时间的解决方案。
The evolution of dynamical systems is generically governed by nonlinear partial differential equations (PDEs), whose solution, in a simulation framework, requires vast amounts of computational resources. In this work, we present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture. Our method treats time and space separately. As a result, it successfully propagates initial conditions in continuous time steps by employing the general composition properties of the partial differential operators. Following previous work, supervision is provided at a specific time point. We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions. The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.