论文标题

通过跨语言转移的几声新闻推荐

Few-shot News Recommendation via Cross-lingual Transfer

论文作者

Guo, Taicheng, Yu, Lu, Shihada, Basem, Zhang, Xiangliang

论文摘要

冷启动问题通常在推荐系统中被认可,并通过遵循一个总体想法来利用温暖用户的丰富互动记录来推断冷用户的偏好。但是,这些解决方案的性能受到暖色用户可用的记录量的限制。因此,基于几个用户的互动记录建立推荐系统仍然是不受欢迎或早期推荐平台的挑战性问题。本文着重于根据两个观察结果解决新闻推荐的几片建议问题。首先,不同平台的新闻(甚至是不同语言)可能会共享类似的主题。其次,对这些主题的用户偏好可以在不同平台上转移。因此,我们建议通过将用户新的偏好从许多弹药源域转移到几个弹出目标域来解决几个播放新闻推荐问题。为了桥接两个甚至不同语言的领域,没有任何重叠的用户和新闻,我们提出了一个新颖的无监督的跨语言转移模型,作为在两个域中与语义上相似的新闻保持一致的新闻编码器。用户编码器是在对齐新闻编码的顶部构造的,并将用户偏好从源域转移到目标域。两个现实世界新闻推荐数据集的实验结果表明,与基线相比,我们提出的方法的出色表现在解决了很少的新闻建议方面。

The cold-start problem has been commonly recognized in recommendation systems and studied by following a general idea to leverage the abundant interaction records of warm users to infer the preference of cold users. However, the performance of these solutions is limited by the amount of records available from warm users to use. Thus, building a recommendation system based on few interaction records from a few users still remains a challenging problem for unpopular or early-stage recommendation platforms. This paper focuses on solving the few-shot recommendation problem for news recommendation based on two observations. First, news at different platforms (even in different languages) may share similar topics. Second, the user preference over these topics is transferable across different platforms. Therefore, we propose to solve the few-shot news recommendation problem by transferring the user-news preference from a many-shot source domain to a few-shot target domain. To bridge two domains that are even in different languages and without any overlapping users and news, we propose a novel unsupervised cross-lingual transfer model as the news encoder that aligns semantically similar news in two domains. A user encoder is constructed on top of the aligned news encoding and transfers the user preference from the source to target domain. Experimental results on two real-world news recommendation datasets show the superior performance of our proposed method on addressing few-shot news recommendation, comparing to the baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源