论文标题
RCA:通过自我监督学习的骑行舒适感的视觉导航
RCA: Ride Comfort-Aware Visual Navigation via Self-Supervised Learning
论文作者
论文摘要
在共同的自主权下,轮椅用户期望车辆在遵循用户高级导航计划的同时提供安全舒适的游乐设施。为了找到这样的道路,车辆与不同的地形进行谈判,并评估其遍历困难。大多数先前的作品通过几何表示或语义分类进行了模型,这并不能反映在下游导航任务中感知的运动强度和骑行舒适性。我们建议使用本体感受感测在遍历性分析中明确建模舒适性。我们开发了一个自制的学习框架,以通过利用车辆状态作为训练信号来预测第一人称视图图像的遍历性成本量。我们的方法估计,如果根据地形出现进行遍历,车辆的感觉会如何。然后,我们显示我们的导航系统通过机器人实验以及人类评估研究提供了人类偏爱的骑行舒适性。
Under shared autonomy, wheelchair users expect vehicles to provide safe and comfortable rides while following users high-level navigation plans. To find such a path, vehicles negotiate with different terrains and assess their traversal difficulty. Most prior works model surroundings either through geometric representations or semantic classifications, which do not reflect perceived motion intensity and ride comfort in downstream navigation tasks. We propose to model ride comfort explicitly in traversability analysis using proprioceptive sensing. We develop a self-supervised learning framework to predict traversability costmap from first-person-view images by leveraging vehicle states as training signals. Our approach estimates how the vehicle would feel if traversing over based on terrain appearances. We then show our navigation system provides human-preferred ride comfort through robot experiments together with a human evaluation study.