论文标题

从增强的采样模拟中重新加权的集体变量的多种流动学习

Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations

论文作者

Rydzewski, Jakub, Chen, Ming, Ghosh, Tushar K., Valsson, Omar

论文摘要

在计算物理和化学中,增强的采样方法是必不可少的,由于采样问题,原子模拟无法详尽地对动态系统的高维配置空间进行采样。一类增强的抽样方法通过识别一些缓慢的自由度,称为集体变量(CVS)并增强沿这些CVS的采样来起作用。选择CVS来分析和驱动采样并不是微不足道的,并且通常依赖于物理和化学直觉。尽管使用流形学习通常会从标准模拟中直接估算CVS,但这种方法无法通过增强的采样模拟为低维流形提供映射,因为学到的歧管的几何形状和密度是有偏见的。在这里,我们解决了这个关键问题,并根据各向异性扩散图提供了一般的重新加权框架,以考虑到从偏见的概率分布中取样学习数据集。我们考虑基于构建马尔可夫链的多种学习方法来描述高维样本之间的过渡概率。我们表明,我们的框架恢复了偏置效应,从而产生了正确描述平衡密度的CV。这种进步可以直接从增强的采样模拟生成的数据中直接使用流形学习来构建低维CVS。我们称我们的框架重新持续的多种多样学习。我们表明,它可以在来自标准和增强采样模拟的数据上的许多多种学习技术中使用。

Enhanced sampling methods are indispensable in computational physics and chemistry, where atomistic simulations cannot exhaustively sample the high-dimensional configuration space of dynamical systems due to the sampling problem. A class of such enhanced sampling methods works by identifying a few slow degrees of freedom, termed collective variables (CVs), and enhancing the sampling along these CVs. Selecting CVs to analyze and drive the sampling is not trivial and often relies on physical and chemical intuition. Despite routinely circumventing this issue using manifold learning to estimate CVs directly from standard simulations, such methods cannot provide mappings to a low-dimensional manifold from enhanced sampling simulations as the geometry and density of the learned manifold are biased. Here, we address this crucial issue and provide a general reweighting framework based on anisotropic diffusion maps for manifold learning that takes into account that the learning data set is sampled from a biased probability distribution. We consider manifold learning methods based on constructing a Markov chain describing transition probabilities between high-dimensional samples. We show that our framework reverts the biasing effect yielding CVs that correctly describe the equilibrium density. This advancement enables the construction of low-dimensional CVs using manifold learning directly from data generated by enhanced sampling simulations. We call our framework reweighted manifold learning. We show that it can be used in many manifold learning techniques on data from both standard and enhanced sampling simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源