论文标题
PSM:基于弹簧抑制摆的身体运动的预测安全模型
PSM: A Predictive Safety Model for Body Motion Based On the Spring-Damper Pendulum
论文作者
论文摘要
量化人体方向的安全性是人类机器人相互作用的重要问题。了解人类运动的身体限制不断变化,可以改善对安全人类运动的检查,并通过实时风险评估带来有关人体定向的稳定性和正常性的基本信息。此外,这些信息可以用于合作机器人和监视系统中,以更自由地评估和互动。此外,工作空间区域可以更确定性地具有安全性的物理特征。基于这种动机,我们提出了一种新型的预测安全模型(PSM),该模型依赖于人类胸部的惯性测量单元的信息。 PSM涵盖了一个3多型弹簧型摆锤模型,该模型基于安全运动数据集预测人类运动。通过将安全数据集和弹性弹簧抑制模型集成的方式可以获得人类的估计安全取向,以至于建议的方法可以在不同的安全水平下实现复杂的运动。我们在现实情况下进行了实验,以验证我们的新型模型。这种新颖的方法可以在不同的指导/辅助机器人和健康监测系统中使用,以支持和评估人类状况,尤其是长者。
Quantifying the safety of the human body orientation is an important issue in human-robot interaction. Knowing the changing physical constraints on human motion can improve inspection of safe human motions and bring essential information about stability and normality of human body orientations with real-time risk assessment. Also, this information can be used in cooperative robots and monitoring systems to evaluate and interact in the environment more freely. Furthermore, the workspace area can be more deterministic with the known physical characteristics of safety. Based on this motivation, we propose a novel predictive safety model (PSM) that relies on the information of an inertial measurement unit on the human chest. The PSM encompasses a 3-Dofs spring-damper pendulum model that predicts human motion based on a safe motion dataset. The estimated safe orientation of humans is obtained by integrating a safety dataset and an elastic spring-damper model in a way that the proposed approach can realize complex motions at different safety levels. We did experiments in a real-world scenario to verify our novel proposed model. This novel approach can be used in different guidance/assistive robots and health monitoring systems to support and evaluate the human condition, particularly elders.