论文标题

具有学习形状控制的深层变形3D漫画

Deep Deformable 3D Caricatures with Learned Shape Control

论文作者

Jung, Yucheol, Jang, Wonjong, Kim, Soongjin, Yang, Jiaolong, Tong, Xin, Lee, Seungyong

论文摘要

3D漫画是对人脸的夸张的3D描述。本文的目的是对紧凑的参数空间中的3D漫画的变化进行建模,以便我们可以为处理3D漫画变形的有用的数据驱动工具包。为了实现目标,我们提出了一个基于MLP的框架,用于构建可变形的表面模型,该模型采用潜在代码并产生3D表面。在框架中,警笛MLP建模一个函数,该功能在固定模板表面上占据3D位置,并返回输入位置的3D位移向量。我们通过学习采用潜在代码并产生MLP参数的超网络来创建3D表面的变化。一旦了解到,我们的可变形模型为3D漫画提供了一个不错的编辑空间,支持基于标签的语义编辑和基于尖的基于尖的变形,这两者都产生了高度夸张和自然的3D讽刺形状。我们还展示了可变形模型的其他应用,例如自动3D漫画创作。

A 3D caricature is an exaggerated 3D depiction of a human face. The goal of this paper is to model the variations of 3D caricatures in a compact parameter space so that we can provide a useful data-driven toolkit for handling 3D caricature deformations. To achieve the goal, we propose an MLP-based framework for building a deformable surface model, which takes a latent code and produces a 3D surface. In the framework, a SIREN MLP models a function that takes a 3D position on a fixed template surface and returns a 3D displacement vector for the input position. We create variations of 3D surfaces by learning a hypernetwork that takes a latent code and produces the parameters of the MLP. Once learned, our deformable model provides a nice editing space for 3D caricatures, supporting label-based semantic editing and point-handle-based deformation, both of which produce highly exaggerated and natural 3D caricature shapes. We also demonstrate other applications of our deformable model, such as automatic 3D caricature creation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源