论文标题

radial重量在强大的空间上引起的希尔伯特型操作员

Hilbert-type operator induced by radial weight on Hardy spaces

论文作者

Merchán, Noel, Peláez, José Angel, de la Rosa, Elena

论文摘要

我们考虑 希尔伯特型操作员定义 $$ h_Ω(f)(z)= \ int_0^1 f(t)\ left(\ frac {1} {z} {z} \ int_0^z b^ω__t(u)\,du \ right)\,ω(t)dt,$$ 其中$ \ {b^ω_} _ {ζ\ in \ mathbb {d}} $是Bergman Space $ a^2_Ω$的重现核,由radial重量$ω$引起的单位光盘$ \ Mathbb {d} $引起的radial重重$ω$。我们证明,$h_Ω$在hardy space $ h^p $,$ 1 <p <\ infty $上,且仅当且仅当且仅当'' \ frac {1+r} {2} \ right)} <\ infty,\ tag†\ end {equation} 和 \ begin {equation*} \ sup \ limits_ {0 <r <1} \ left(\ int_0^r \ frac {1} {\wideHatΩ(t)^p} dt \ right)^{\ frac {1} {1} {p}}} \ left(\ int_r^1 \ left(\ frac {\wideHatΩ(t)} {1-t} \ right) \ end {equation*} 其中$ \wideHatΩ(r)= \ int_r^1Ω(s)\,ds $。 我们还证明$h_Ω:h^1 \ to h^1 $在且仅当\ eqref {abs1}保存时才有限 $ \ sup \ limits_ {r \ in [0,1)} \ frac {\wideHatΩ(r)} {1-r} \ left(\ int_0^r \ frac {ds} {\ wideHat(\ wideHat(s)) 至于情况,$ p = \ infty $,$h_Ω$从$ h^\ infty $到$ bmoa $,或者在且仅当\ eqref {abs1}保存时,或者是bloch空间。 此外,我们证明不存在radial权重$ω$,因此$h_Ω:h^p \ to h^p $,$ 1 \ le p <\ infty $是紧凑的,我们考虑$h_Ω$对与硬质空间相关的分析功能的某些空间的动作。

We consider the Hilbert-type operator defined by $$ H_ω(f)(z)=\int_0^1 f(t)\left(\frac{1}{z}\int_0^z B^ω_t(u)\,du\right)\,ω(t)dt,$$ where $\{B^ω_ζ\}_{ζ\in\mathbb{D}}$ are the reproducing kernels of the Bergman space $A^2_ω$ induced by a radial weight $ω$ in the unit disc $\mathbb{D}$. We prove that $H_ω$ is bounded on the Hardy space $H^p$, $1<p<\infty$, if and only if \begin{equation} \label{abs1} \sup_{0\le r<1} \frac{\widehatω(r)}{\widehatω\left( \frac{1+r}{2}\right)}<\infty, \tag† \end{equation} and \begin{equation*} \sup\limits_{0<r<1}\left(\int_0^r \frac{1}{\widehatω(t)^p} dt\right)^{\frac{1}{p}} \left(\int_r^1 \left(\frac{\widehatω(t)}{1-t}\right)^{p'}\,dt\right)^{\frac{1}{p'}} <\infty, \end{equation*} where $\widehatω(r)=\int_r^1 ω(s)\,ds$. We also prove that $H_ω: H^1\to H^1$ is bounded if and only if \eqref{abs1} holds and $$ \sup\limits_{r \in [0,1)} \frac{\widehatω(r)}{1-r} \left(\int_0^r \frac{ds}{\widehatω(s)}\right)<\infty.$$ As for the case $p=\infty$, $H_ω$ is bounded from $H^\infty$ to $BMOA$, or to the Bloch space, if and only if \eqref{abs1} holds. In addition, we prove that there does not exist radial weights $ω$ such that $H_ω: H^p \to H^p $, $1\le p<\infty$, is compact and we consider the action of $H_ω$ on some spaces of analytic functions closely related to Hardy spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源