论文标题
VOIGT近似中的中子星形壳II:电子筛选校正的一般公式,用于有效剪切模量
Neutron star crust in Voigt approximation II: general formula for electron screening correction for effective shear modulus
论文作者
论文摘要
可以在库仑固体模型中计算中子星形壳的有效剪切模量的主要贡献,可以通过简单的分析表达来近似任意(甚至多组分)组成。在这里,我考虑了与托马斯 - 富尔米近似中的电子筛选相关的校正。特别是,我证明,对于相对论电子(密度$ρ> 10^6 $ g \,cm $^{ - 3} $)可以估计为$Δμ__\ Mathrm {eff}^\ mathrm {v} e^2/a_ \ mathrm {e} $,在离子物种上进行求和,$ n_z $是带电$ ze $,$ k_ \ mathrm {tf} $的离子的数字密度是thomas-fermi筛选波数。最后,$ a_ \ mathrm {e} =(4πn_\ mathrm {e}/3)^{ - 1/3} $是电子球半径。假设Quasineutrality条件$ N_ \ MATHRM {E} = \ sum_z z n_z $。该结果适用于任意(甚至多组分和无定形)物质,并且可以用于中子恒星外壳和(密集的)白色矮人的核心。例如,筛选校正将剪切模量减少$ \ sim 9 $ \%,$ z \ sim40 $,这对于中子星形壳的内层是典型的。
The main contribution to the effective shear modulus of neutron star crust can be calculated within Coulomb solid model and can be approximated by simple analytical expression for arbitrary (even multicomponent) composition. Here I consider correction associated with electron screening within Thomas-Fermi approximation. In particular, I demonstrate that for relativistic electrons (density $ρ>10^6$ g\,cm$^{-3}$) this correction can be estimated as $δμ_\mathrm{eff}^\mathrm{V}= -9.4\times 10^{-4}\sum_Z n_Z Z^{7/3} e^2/a_\mathrm{e}$, where summation is taken over ion species, $n_Z$ is number density of ions with charge $Ze$, $k_\mathrm{TF}$ is Thomas-Fermi screening wave number. Finally, $a_\mathrm{e}=(4 πn_\mathrm{e}/3)^{-1/3}$ is electron sphere radius. Quasineutrality condition $n_\mathrm{e}=\sum_Z Z n_Z$ is assumed. This result holds true for arbitrary (even multicomponent and amorphous) matter and can be applied for neutron star crust and (dense) cores of white dwarfs. For example, the screening correction reduces shear modulus by $\sim 9$\% for $Z\sim40$, which is typical for inner layers of neutron star crust.