论文标题

价值键量蒙特卡洛法

The Valence-Bond Quantum Monte Carlo Method

论文作者

Radenković, Slavko, Domin, Dominik, Toulouse, Julien, Braïda, Benoît

论文摘要

VB-QMC方法在本章中介绍。它包括在量子蒙特卡洛(QMC)中使用的波函数,其表达为通常短的经典价值键(VB)结构,该结构补充了jastrow因子,以说明动态相关性。存在两个变体:VB-VMC(使用变异蒙特卡洛)和VB-DMC(使用扩散蒙特卡洛)方法。 QMC算法规定了经典VB方法的臭名昭著的非正交性问题,并允许对大量平行的机器进行高效的计算。在VB-VMC级别上可以计算VB权重和共振能,这使VB-VMC成为一个相关方法,可保留经典VB方法的所有解释能力。 显示最近的几种应用以说明该方法是研究分子的基础和激发态的经典VB方法的现代替代方案的潜力。

The VB-QMC method is presented in this chapter. It consists of using in quantum Monte Carlo (QMC) approaches with a wave function expressed as a usually short expansion of classical Valence-Bond (VB) structures supplemented by a Jastrow factor to account for dynamical correlation. Two variants exist: the VB-VMC (using variational Monte Carlo) and VB-DMC (using diffusion Monte Carlo) methods. QMC algorithms circumvent the notorious non-orthogonality issue of classical VB approaches, and allow highly efficient calculations on massively parallel machines. Calculation of VB weights and resonance energies are possible at the VB-VMC level, which makes VB-VMC a correlated method retaining all the interpretative capabilities of classical VB methods. Several recent applications are shown to illustrate the potential of this method as a modern alternative to classical VB methods to study ground and excited states of molecules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源