论文标题
关于有限组诱导的Brauer配置代数
On Brauer configuration algebras induced by finite groups
论文作者
论文摘要
在本文中,我们计算了Brauer配置代数的表示理论的两个方面:其Cartan矩阵以及其相关的不可分解的投影模块的模块长度。然后,我们介绍一个组中元素的亚组 - 出现概念,并使用先前的方面来证明对任何有限组满足的组合平等性。
In this article we calculate two aspects of the representation theory of a Brauer configuration algebra: its Cartan matrix, and the module length of its associated indecomposable projective modules. Then we introduce the concept of subgroup-occurrence of an element in a group and use the previous aspects to demonstrate combinatorial equalities satisfied for any finite group.