论文标题
$ ads_5 \ times s^5 $的约旦变形的半经典光谱
Semiclassical spectrum of a Jordanian deformation of $AdS_5 \times S^5$
论文作者
论文摘要
我们研究了$ ads_5 \ times s^5 $ superString的约旦变形,该变形可保留12个超级图。它是同质杨巴克斯特变形的一个例子,该类别将TST变形概括为非阿贝尔案例。 TST的许多吸引人的特征都延续到了这个更一般的阶级,从生成新的超级解决方案到保护世界集成性的可能性。在本文中,我们利用了一个事实,即具有周期性边界条件的变形$σ$模型可以重新制定为具有扭曲边界条件的未构造的,以讨论经典光谱曲线的构建及其半经典量化。首先,我们找到了变形背景的全局坐标,并确定与应该在光谱问题中计算的能量相对应的全局时间。使用扭曲模型的曲线,我们获得了对特定溶液能量的一环校正,并且发现编码扭曲边界条件的电荷不会接受异常校正。最后,我们提供了证据,表明变形的单模型版本(产生超级背景)和非象征性的形式(其背景无法求解超级方程)至少具有相同的频谱与一环。
We study a Jordanian deformation of the $AdS_5 \times S^5$ superstring that preserves 12 superisometries. It is an example of homogeneous Yang-Baxter deformations, a class that generalises TsT deformations to the non-abelian case. Many of the attractive features of TsT carry over to this more general class, from the possibility of generating new supergravity solutions to the preservation of worldsheet integrability. In this paper, we exploit the fact that the deformed $σ$-model with periodic boundary conditions can be reformulated as an undeformed one with twisted boundary conditions, to discuss the construction of the classical spectral curve and its semi-classical quantisation. First, we find global coordinates for the deformed background, and identify the global time corresponding to the energy that should be computed in the spectral problem. Using the curve of the twisted model, we obtain the one-loop correction to the energy of a particular solution, and we find that the charge encoding the twisted boundary conditions does not receive an anomalous correction. Finally, we give evidence suggesting that the unimodular version of the deformation (giving rise to a supergravity background) and the non-unimodular one (whose background does not solve the supergravity equations) have the same spectrum at least to one-loop.