论文标题
完全可匹配的集合多项式和$ h^*$ - 稳定的套件的多项式图形互补
Perfectly Matchable Set Polynomials and $h^*$-polynomials for Stable Set Polytopes of Complements of Graphs
论文作者
论文摘要
图$ g $的子集$ s $,如果$ s $引起的子图包含完美的匹配,则称为$ g $完全匹配的$ g $。 Ohsugi和Tsuchiya首先是$ g $的完全匹配的$ g $的多项式,是(普通的)生成函数$ p(g; z)$,对于$ g $的完全匹配的集合。 在这项工作中,我们为任意(简单)图的计算$ p(g; z)$提供明确的复发,并使用它们来计算某些晶格多型的ehrhart $ h^*$ - 多项式。也就是说,我们表明$ p(g; z)$是某些类别稳定的集合多型的$ h^*$ - 多项式,其顶点对应于$ g $的稳定集。
A subset $S$ of vertices of a graph $G$ is called a perfectly matchable set of $G$ if the subgraph induced by $S$ contains a perfect matching. The perfectly matchable set polynomial of $G$, first made explicit by Ohsugi and Tsuchiya, is the (ordinary) generating function $p(G; z)$ for the number of perfectly matchable sets of $G$. In this work, we provide explicit recurrences for computing $p(G; z)$ for an arbitrary (simple) graph and use these to compute the Ehrhart $h^*$-polynomials for certain lattice polytopes. Namely, we show that $p(G; z)$ is the $h^*$-polynomial for certain classes of stable set polytopes, whose vertices correspond to stable sets of $G$.