论文标题

对称hyperbolic准溶血动力学

Symmetric-hyperbolic quasi-hydrodynamics

论文作者

Gavassino, Lorenzo, Antonelli, Marco, Haskell, Brynmor

论文摘要

我们建立了一个通用框架,用于在线性,因果关系和稳定的流体动力学理论中进行系统地构建和分类,与通常的流体动力学模式一起,还允许任意数量的非流动力模式与复杂的分散关系(通常将这种理论引用为“ quasi-hydrodynicnicnics”)。为了增加非流动力模式的数量,需要为模型添加更有效的字段。统治这类准融化理论的方程系统是对称双曲线,热力学上一致的(即熵是lyapunov函数),可以从动作原理中得出。作为形式主义的第一个应用,我们证明,在线性政权中,在埃克特框架中的以色列 - 斯图尔特理论和兰道框架中的以色列 - 斯图尔特理论是完全相同的理论。此外,通过OnSager-Casimir分析,我们表明,在紧密耦合的等离子中,非平衡的自由度通常出现在成对中,其成员在时间逆转下获得相反的阶段。我们使用这种见解来修改Cattaneo的模型进行扩散,以使其初始瞬态与全息等离子体的瞬态动力学一致。

We set up a general framework for systematically building and classifying, in the linear regime, causal and stable dissipative hydrodynamic theories that, alongside with the usual hydrodynamic modes, also allow for an arbitrary number of non-hydrodynamic modes with complex dispersion relation (such theories are often referred to as "quasi-hydrodynamic"). To increase the number of non-hydrodynamic modes one needs to add more effective fields to the model. The system of equations governing this class of quasi-hydrodynamic theories is symmetric hyperbolic, thermodynamically consistent (i.e. the entropy is a Lyapunov function) and can be derived from an action principle. As a first application of the formalism, we prove that, in the linear regime, the Israel-Stewart theory in the Eckart frame and the Israel-Stewart theory in the Landau frame are exactly the same theory. In addition, with an Onsager-Casimir analysis, we show that in strongly coupled plasmas the non-equilibrium degrees of freedom typically appear in pairs, whose members acquire opposite phase under time reversal. We use this insight to modify Cattaneo's model for diffusion, in a way to make its initial transient consistent with the transient dynamics of holographic plasmas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源