论文标题
d-flat:端到端跨表图视觉传感器设计的一个可区分的平面框架
D-Flat: A Differentiable Flat-Optics Framework for End-to-End Metasurface Visual Sensor Design
论文作者
论文摘要
光学元面是具有定制设计的纳米级特征的平面基板,相对于方向,波长和极化,选择性调节入射光。当与光电探测器和适当的捕获后处理相结合时,它们提供了一种方法来创建非常小且具有独特功能的计算成像仪和传感器。我们介绍了D-Flat,这是一个张量流中的框架,它呈现由Metasurface光学系统诱导的物理精确图像。相对于跨表面形状和捕获后计算参数,该框架完全可区分,并且几乎可以相对于几乎任何传感器性能的量度,可以同时优化。 D-FLAT可以模拟毫米在商品计算机上的直径毫米直径,并且在适应各种波光学模型的意义上是模块化的,用于散射在元曲面和向光发射器传播。我们根据符号计算和以前的实验测量验证了D-FLAT,并提供了模拟,以证明其为两种应用发现新型计算传感器设计的能力:单发深度传感和单发空间频率滤波。
Optical metasurfaces are planar substrates with custom-designed, nanoscale features that selectively modulate incident light with respect to direction, wavelength, and polarization. When coupled with photodetectors and appropriate post-capture processing, they provide a means to create computational imagers and sensors that are exceptionally small and have distinctive capabilities. We introduce D-Flat, a framework in TensorFlow that renders physically-accurate images induced by metasurface optical systems. This framework is fully differentiable with respect to metasurface shape and post-capture computational parameters and allows simultaneous optimization with respect to almost any measure of sensor performance. D-Flat enables simulation of millimeter to centimeter diameter metasurfaces on commodity computers, and it is modular in the sense of accommodating a variety of wave optics models for scattering at the metasurface and for propagation to photosensors. We validate D-Flat against symbolic calculations and previous experimental measurements, and we provide simulations that demonstrate its ability to discover novel computational sensor designs for two applications: single-shot depth sensing and single-shot spatial frequency filtering.