论文标题
标量和量规场理论中的延态的特性
Properties of the Conformal Yangian in Scalar and Gauge Field Theories
论文作者
论文摘要
提出了作用于标量和量规场的SO(2,n)的特性。事实证明,这种差异算子的无限尺寸延伸表示,可以满足外壳标量理论的任意时空尺寸n的serre关系,但仅在shell和shell of pague理论中n = 4。 so(2,n)扬吉亚人仅对脱壳运动不变式$(k_i+k_ {i+1}+...)^2 $,它可以消灭单个单独的外壳标量$ λϕ^3 $ feynman树的图,如果差异操作员是通过图表扩展了依赖性的依赖性评估,则n = 6的n = 6。 SO(2,4)Yangian级的发电机被证明可以在纯Yang-Mills Gluon树振幅上以紧凑的方式作用。还描述了扬吉人对CHY形式主义的散射多项式的作用。
Properties of the SO(2,n) Yangian acting on scalar and gauge fields are presented. This differential operator representation of the infinite-dimensional extension of the conformal algebra SO(2,n) is proved to satisfy the Serre relation for arbitrary spacetime dimension n for off-shell scalar theory, but only on shell and for n=4 in the gauge theory. The SO(2,n) Yangian acts simply on the off-shell kinematic invariants $(k_I+k_{I+1}+ ...)^2$, and it annihilates individual off-shell scalar $λϕ^3$ Feynman tree graphs for n=6 if the differential operator representation is extended by graph dependent evaluation terms. The SO(2,4) Yangian level one generators are shown to act in a compact way on pure Yang-Mills gluon tree amplitudes. The action of the Yangian on the scattering polynomials of a CHY formalism is also described.