论文标题
域自适应单眼估计的学习特征分解
Learning Feature Decomposition for Domain Adaptive Monocular Depth Estimation
论文作者
论文摘要
单眼深度估计(MDE)由于其低成本和机器人任务(例如定位,映射和障碍物检测)的关键功能而吸引了激烈的研究。随着深度学习的发展,监督的方法已取得了巨大的成功,但它们依靠大量的地面深度注释,这些深度很昂贵。无监督的域适应性(UDA)将知识从标记的源数据转移到未标记的目标数据,以放大监督学习的约束。但是,由于域移位问题,现有的UDA方法可能无法完全对齐不同数据集的域间隙。我们认为,可以通过精心设计的特征分解来实现更好的域对齐。在本文中,我们提出了一种针对MDE的新型UDA方法,称为适应的学习特征分解(LFDA),该方法学会将功能空间分解为内容和样式组件。 LFDA仅尝试对齐内容组件,因为它具有较小的域间隙。同时,它不包括针对源域的样式组件,而不是训练主要任务。此外,LFDA使用单独的特征分布估计来进一步弥合域间隙。在三个域适应性MDE方案上进行了广泛的实验表明,与最先进的方法相比,所提出的方法可实现卓越的准确性和较低的计算成本。
Monocular depth estimation (MDE) has attracted intense study due to its low cost and critical functions for robotic tasks such as localization, mapping and obstacle detection. Supervised approaches have led to great success with the advance of deep learning, but they rely on large quantities of ground-truth depth annotations that are expensive to acquire. Unsupervised domain adaptation (UDA) transfers knowledge from labeled source data to unlabeled target data, so as to relax the constraint of supervised learning. However, existing UDA approaches may not completely align the domain gap across different datasets because of the domain shift problem. We believe better domain alignment can be achieved via well-designed feature decomposition. In this paper, we propose a novel UDA method for MDE, referred to as Learning Feature Decomposition for Adaptation (LFDA), which learns to decompose the feature space into content and style components. LFDA only attempts to align the content component since it has a smaller domain gap. Meanwhile, it excludes the style component which is specific to the source domain from training the primary task. Furthermore, LFDA uses separate feature distribution estimations to further bridge the domain gap. Extensive experiments on three domain adaptative MDE scenarios show that the proposed method achieves superior accuracy and lower computational cost compared to the state-of-the-art approaches.