论文标题

Schwarzian八面体复发(DSKP方程)II:几何系统

The Schwarzian octahedron recurrence (dSKP equation) II: geometric systems

论文作者

Affolter, Niklas Christoph, de Tilière, Béatrice, Melotti, Paul

论文摘要

我们考虑九个几何系统:miquel动力学,p-net,可集成的交叉比例图,离散的全态函数,正交圆模式,多边形再爆发,圆圈相交动力学,(波纹)五角星图和短对角色的增生图。使用统一的框架,对于每个系统,我们证明了解决方案作为初始数据的函数的明确表达式。更确切地说,我们表明该解等于AZTEC钻石上定向二聚体模型的两个分区函数的比率,该二聚体的面重量是由初始数据构成的。然后,我们研究devron属性[GLI15],该属性指出以下内容:如果系统从对向后动力学的奇异数据开始,则该奇异性有望在正向动力学的有限数量后重复发生。同样,使用统一的框架,我们证明了上述所有几何系统的devron属性,用于不同类型的单数初始数据。在此过程中,我们获得了新的奇异结果,也获得了已知的结果[GLI15,YAO14]。我们的一般方法包括证明这9个几何系统都与Schwarzian八面体复发(DSKP方程)有关,然后依靠伴随论文[ADTM22],在该论文[ADTM22]中,我们在一般中研究了这种复发,证明了明确表达和奇异的结果。

We consider nine geometric systems: Miquel dynamics, P-nets, integrable cross-ratio maps, discrete holomorphic functions, orthogonal circle patterns, polygon recutting, circle intersection dynamics, (corrugated) pentagram maps and the short diagonal hyperplane map. Using a unified framework, for each system we prove an explicit expression for the solution as a function of the initial data; more precisely, we show that the solution is equal to the ratio of two partition functions of an oriented dimer model on an Aztec diamond whose face weights are constructed from the initial data. Then, we study the Devron property [Gli15], which states the following: if the system starts from initial data that is singular for the backwards dynamics, this singularity is expected to reoccur after a finite number of steps of the forwards dynamics. Again, using a unified framework, we prove this Devron property for all of the above geometric systems, for different kinds of singular initial data. In doing so, we obtain new singularity results and also known ones [Gli15, Yao14]. Our general method consists in proving that these nine geometric systems are all related to the Schwarzian octahedron recurrence (dSKP equation), and then to rely on the companion paper [AdTM22], where we study this recurrence in general, prove explicit expressions and singularity results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源